怎样证明一个函数在一个区间内可导?

 我来答
惠企百科
2022-12-22 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

1、首先证明函数在区间内是连续的。

2、用函数求导公式对函数求导,并判断导函数在区间是否有意义。

3、用定义法对端点和分段点分别求导,并且分要证明分段点的左右导数均存在且相等。

证明一个函数在一个区间内可导即证明在定义域中每一点导数存在。函数在某点可导的充要条件:左导数和右导数都存在并且相等。

扩展资料:

导数与函数的性质:

1、若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

2、若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。

3、可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。

4、如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。

北京埃德思远电气技术咨询有限公司
2023-08-25 广告
连续就是说在某一点的左右极限相等且等于函数值左右端点处除外,只要相应的极限等于函数值就行了函数在一个区间内连续就是指区间内的任一点都满足这种关系。函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式