求解常微分方程(dx/dt)((t^2)(x^3)+tx)=1

rt,求大神解答,试着想凑成全微分形式但是怎么都不成功...... rt,求大神解答,试着想凑成全微分形式但是怎么都不成功... 展开
ThyFhw
2013-09-15 · TA获得超过2.6万个赞
知道大有可为答主
回答量:4637
采纳率:50%
帮助的人:2310万
展开全部
→dt/dx=(t^2)(x^3)+tx
→(1/t^2)(dt/dx)=x^3+x/t
令u=1/t,则du/dt=-1/t^2
即 -du/dx=x^3+ux
写成一阶微分方程的一般形式为
u'(x)+x·u=-x^3
其通解为
u=e^(-∫xdx)·[-∫x^3·e^(∫xdx) dx + C]
=e^(-x²/2)·[-∫x^3·e^(x²/2) dx + C]
=e^(-x²/2)·[-(1/2)∫x^2·e^(x²/2) dx² + C]
=e^(-x²/2)·[-∫x^2·e^(x²/2) d(x²/2) + C]
=e^(-x²/2)·[-∫x^2 d(e^(x²/2)) + C]
=e^(-x²/2)·[-x^2·(e^(x²/2)) + 2∫(e^(x²/2)) d(x²/2) + C]
=e^(-x²/2)·[-x^2·(e^(x²/2)) + 2(e^(x²/2)) + C]
= -x² +2 +C/e^(x²/2)

1/t= -x² +2 +C/e^(x²/2)
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式