为什么ln(1+ x)/ x= lim(x->0)?

 我来答
轮看殊O
高粉答主

2023-03-24 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:728万
展开全部

当x->0时,ln(1+x)~x

lim(x->0) ln(1+x)/x

=lim(x->0) ln[(1+x)^(1/x)]

根据两个重要极限之一,lim(x->0) (1+x)^(1/x)=e,得:

=lne

=1

所以ln(1+x)与x是等价无穷小

扩展资料

求极限基本方法有

1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;

2、无穷大根式减去无穷大根式时,分子有理化;

3、运用两个特别极限;

4、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式