有关三角形的外角的题证明,怎么证
如图所示,在△ABC中,∠A=α,△ABC的内角平分线或外角平分线交于点P,且∠P=β,试探求下列各图中α与β的关系,并全部说明理由...
如图所示,在△ABC中,∠A=α,△ABC的内角平分线或外角平分线交于点P,且∠P=β,试探求下列各图中α与β的关系,并全部说明理由
展开
1个回答
展开全部
解:
(1)
β=∠P
=180°-∠PBC-∠PCB
=180°-∠ABC/2-∠ACB/2
=180°-(∠ABC+∠ACB)/2
=180°-(180°-∠BAC)/2
=180°-(180°-α)/2
=90°+α/2
(2)
β=∠P
=∠PCD-∠PBC (假设D在BC延长线上)
=∠ACD/2-∠ABC/2
=(∠ACD-∠ABC)/2
=∠A/2
=α/2
(3)
β=∠P
=180°-∠PBC-∠PCB
=180°-∠DBC/2-∠ECB/2 (假设D,E分别在AB,AC延长线上)
=180°-(∠DBC+∠ECB)/2
=180°-[(180°-∠ABC)+(180°-∠ACB)]/2
=180°-[360°-(∠ABC+∠ACB)]/2
=180°-[360°-(180°-∠BAC)]/2
=180°-(180°+∠BAC)/2
=90°-α/2
(1)
β=∠P
=180°-∠PBC-∠PCB
=180°-∠ABC/2-∠ACB/2
=180°-(∠ABC+∠ACB)/2
=180°-(180°-∠BAC)/2
=180°-(180°-α)/2
=90°+α/2
(2)
β=∠P
=∠PCD-∠PBC (假设D在BC延长线上)
=∠ACD/2-∠ABC/2
=(∠ACD-∠ABC)/2
=∠A/2
=α/2
(3)
β=∠P
=180°-∠PBC-∠PCB
=180°-∠DBC/2-∠ECB/2 (假设D,E分别在AB,AC延长线上)
=180°-(∠DBC+∠ECB)/2
=180°-[(180°-∠ABC)+(180°-∠ACB)]/2
=180°-[360°-(∠ABC+∠ACB)]/2
=180°-[360°-(180°-∠BAC)]/2
=180°-(180°+∠BAC)/2
=90°-α/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询