d是bc延长线上一点,角ABC。角ACD的平分线相交于点E求证∠E=二分之一∠A
2个回答
2013-09-18
展开全部
∵D在BC的延长线上
∴∠ACD=∠ABC+∠A ∴ ∠A=∠ACD-∠ABC
同理:
∠ECD=∠EBC+∠E ∴ ∠E=∠ECD-∠EBC
∵BE、CE分别为角ABC、角ACD的角平分线
∴ ∠EBC=1/2∠ABC ∠ECD=1/2∠ACD
∴∠E=1/2∠ACD-1/2∠ABC=1/2(∠ACD-∠ABC)
所以 ∠E=1/2角A
∴∠ACD=∠ABC+∠A ∴ ∠A=∠ACD-∠ABC
同理:
∠ECD=∠EBC+∠E ∴ ∠E=∠ECD-∠EBC
∵BE、CE分别为角ABC、角ACD的角平分线
∴ ∠EBC=1/2∠ABC ∠ECD=1/2∠ACD
∴∠E=1/2∠ACD-1/2∠ABC=1/2(∠ACD-∠ABC)
所以 ∠E=1/2角A
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-09-18
展开全部
麻烦楼主给个图先,或者讲仔细一点啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询