逻辑智力题,考你的逻辑思维

一个教授逻辑学的教授,有三个学生,而且三个学生均非常聪明!一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告诉他们,每个人的纸条上都写了一个正整数,且某两个数的... 一个教授逻辑学的教授,有三个学生,而且三个学生均非常聪明!一天教授给他们出了一个题,教授在每个人脑门上贴了一张纸条并告诉他们,每个人的纸条上都写了一个正整数,且某两个数的和等于第三个!(每个人可以看见另两个数,但看不见自己的)
教授问第一个学生:你能猜出自己的数吗?回答:不能;
问第二个,不能;
第三个,不能;
再问第一个,不能;
第二个,不能;
第三个:我猜出来了,144!
教授很满意的笑了。请问您能猜出另外两个人的数吗? 请说出理由!
展开
 我来答
匿名用户
2013-09-18
展开全部
有5种可能答案。

这道题没那么简单,推理了下,很有意思,推广形式很复杂,比如说问答的轮数改变,比如说问答的次序改变,但是基本的出发点应该都是从(2N,N,N)的局势开始推导。因为在这种局势下,拥有2N的人在第一轮就能判断出自己的数字。

在纸上计算的过程在这里描述不清楚,简单说明下结论。

以N后面的数字表示该人在第几轮问答中可以判断出自己的数字,从(2N1,N0,N0)/(N0,2N1,N0)/(N0,N0,2N1)三种基本局势可以推导出第一轮问答能够有人答出的全部局势,共有7种。
第二轮问答可以答出的局势可以由以上7种局势进一步推导,共有32种,其中到第三人才能答出的局势有16种,由于144等于2的4次方乘上3的2次方,满足条件的情形有5种。分别是以下情况,注意顺序不能改变!
①、(108,36,144)
②、(36,108,144)
③、(32,102,144)
④、(54,90,144)
⑤、(64,80,144)
分别对应于(3N0,N0,4N2)/(N0,3N0,4N2)/(2N0,7N0,9N2)/(3N0,5N0,8N2)/(4N0,5N0,9N2)五种局势。

为便于大家理解,就其中较复杂的一种情形(64,80,144)反证如下:
1、对第三人来说,如果不能判读出是144,就是说有可能是(64,80,16);
只要能证明(64,80,16)的情况下,第二轮第二人已经可以判断出自己是80就可反证成功;
2、如果(64,80,16)情况下,第二轮第二人不能判断出自己是80,那么就是说可能是(64,48,16);
只要能证明(64,48,16)的情况下,第二轮第一人已经可以判断出自己是64就可反证成功;
3、如果(64,48,16)情况下,第二轮第一人不能判断出自己是64,那么就是说可能是(32,48,16);
只要能证明(32,48,16)的情况下,第一轮第二人已经可以判断出自己是48就可反证成功;
4、如果(32,48,16)情况下,第一轮第二人不能判断出自己是48,那么就是说可能是(32,16,16);
而(32,16,16)的情况下,第一轮第一人已经可以明确判断出自己是32;
反证成功。
其余情形类似,请自行验证。
匿名用户
2013-09-18
展开全部
假设三人依次为A, B,C ,
至于A,B谁是108,谁是36, 这个无所谓,那我们就假设
A=108,B=36, C=144。
第一次:
A猜,自己可能是108或者180
B猜,自己可能是36 或者252
C猜,自己可能是72 或者144
那么第二次,
A猜不知道,B猜不知道,那么C说知道了自己是144,那么,他肯定
是排除了自己是72这种可能性,所以才说是144, 那么,他是怎么否定
自己不是72呢:
C在想,如果自己是72,那么,第一次猜的结果如下:
A以为自己是108或者36
B以为自己是36 或者180
而第一次问答结束的时候,C也没有答出自己的数,那么,在第二次循环
问话的时候,A应该知道自己是108了(因为,如果自己是36,怎C第一次就
知道36-36=0是不可能的,那么自己不是36,所以是108),但遗憾A并没能
说出自己的数字,B当然也不能说出自己的数字,
那么,根据第二次A没能说出自己的数字,C就排除了自己是72 的可能性,
那么自己当然就是144了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-09-18
展开全部
且某两个数的和等于第三个
这题所以只有第三个人才知道
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式