3个回答
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
解:f(x)=x+a/x (a>0) 函数的定义域为(-∞,0)∪(0,+∞) 显然函数为奇函数, 只需讨论x>0的情况即可 任取x1, x2∈(0,+∞), 且x1<x2, x1-x2<0,则 `f(x1)-f(x2) =(x1-x2)+(a/x1-a/x2) =(x1-x2)-a(x1-x2)/x1x2 =(x1-x2)(1-a/x1x2) =(x1-x2)(x1x2-a)/x1x2 ∵x1-x2<0, x1x2>0, a>0 ∴当x1, x2∈(0,√a), 则x1x2<a, 此时f(x1)>f(x2) 即f(x)在(0,√a]上是减函数 当x1, x2∈(√a,+∞), 则x1x2>a, 此时f(x1)<f(x2) 即f(x)在[√a,+∞)上是增函数 根据奇函数性质 f(x)的单调增区间为(-∞,-√a]和[√a,+∞) f(x)的单调减区间为[-√a,0)和(0,√a]
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)的倒数 为 1-a/x²
=(x²-a)/x²
令导数=0
x=±√a
当x ∈(0,√a],导数小于0,函数单调递减
当x >√a,导数大于0,函数单调递减
有因为f(x)=-f(-x)
函数为奇函数
对应到 x<0
在(-∞,-√a)递增,[-√a,0)递减
所以f(x)在
(-∞,-√a),(√a,+∞ )递增,
[-√a,0),(0,√a]递减
希望对你有所帮助!
=(x²-a)/x²
令导数=0
x=±√a
当x ∈(0,√a],导数小于0,函数单调递减
当x >√a,导数大于0,函数单调递减
有因为f(x)=-f(-x)
函数为奇函数
对应到 x<0
在(-∞,-√a)递增,[-√a,0)递减
所以f(x)在
(-∞,-√a),(√a,+∞ )递增,
[-√a,0),(0,√a]递减
希望对你有所帮助!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询