设集合A={x|x2—5x+6},B=(x|x2—{2a+1}x+a2+a=0},若B含于A,求实数a的取值范围
设集合A={x|x2—5x+6},B=(x|x2—{2a+1}x+a2+a=0},若B含于A,求实数a的取值范围过程越详细越好求求了...
设集合A={x|x2—5x+6},B=(x|x2—{2a+1}x+a2+a=0},若B含于A,求实数a的取值范围
过程越详细越好求求了 展开
过程越详细越好求求了 展开
2个回答
展开全部
楼主你好!很高兴为你解答:
首先集合A是用描述法给出的,我们将它用列举法表示,即:(x^2是平方的意思~)
解方程x^2-5x+6=0,十字交叉展开得:(x-2)(x-3)=0,
解得:x=2,或x=3,
所以A={2,3}
集合B中,对于方程x^2-(2a+1)x+a^2+a=0,
判别式=(2a+1)^2-4(a^2+a)=1>0恒成立,即方程必定有两个不同的实数解,即B中肯定有两个元素。
因为B含于A,所以
1、B中只含元素2时,即B={2};
2、B中只含元素3时,即B={3};
3、B为空集;
这三种情况均不可能存在,唯一一种可能就是:
B中含元素2,,3时,即B={2,3}时,
由韦达定理得:2+3=2a+1,2*3=a^2+a
解得:a=2,
所以a的取值范围为{a|a=2}
这样解说希望楼主能理解,不清楚的话欢迎追问交流,希望能帮到楼主~
首先集合A是用描述法给出的,我们将它用列举法表示,即:(x^2是平方的意思~)
解方程x^2-5x+6=0,十字交叉展开得:(x-2)(x-3)=0,
解得:x=2,或x=3,
所以A={2,3}
集合B中,对于方程x^2-(2a+1)x+a^2+a=0,
判别式=(2a+1)^2-4(a^2+a)=1>0恒成立,即方程必定有两个不同的实数解,即B中肯定有两个元素。
因为B含于A,所以
1、B中只含元素2时,即B={2};
2、B中只含元素3时,即B={3};
3、B为空集;
这三种情况均不可能存在,唯一一种可能就是:
B中含元素2,,3时,即B={2,3}时,
由韦达定理得:2+3=2a+1,2*3=a^2+a
解得:a=2,
所以a的取值范围为{a|a=2}
这样解说希望楼主能理解,不清楚的话欢迎追问交流,希望能帮到楼主~
追问
为什么三种情况均不可能存在,理由麻烦详细
追答
因为集合B中的方程x^2-(2a+1)x+a^2+a=0,判别式=(2a+1)^2-4(a^2+a)=1>0,这个是恒成立。既然判别式大于0,那么说明这个方程一定有两个不同的实数解,也就是说集合B中一定有两个不同的元素,所以,集合B不可能是空集,且集合B不可能只含一个元素,所以排除了3种情况~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询