已知一次函数f(x)满足f(0)=1,且f(1+x)+(1-x)=4. (1)求f(x)的解析式;

(2)若f(x)乘以g(x)=x,求证:g(x)+g(1除以x)为常数... (2)若f(x)乘以g(x)=x,求证:g(x)+g(1除以x)为常数 展开
yuyou403
2013-09-20 · TA获得超过6.4万个赞
知道顶级答主
回答量:2.2万
采纳率:95%
帮助的人:1亿
展开全部
答:
(1)
一次函数f(x)=kx+b,f(0)=1
f(0)=b=1
f(x)=kx+1
f(1+x)+f(1-x)=4
k(1+x)+1+k(1-x)+1=4
2k=2,k=1
所以:f(x)=x+1

(2)
f(x)*g(x)=x
(x+1)*g(x)=x
g(x)=x/(x+1)
所以:
g(x)+g(1/x)
=x/(x+1)+(1/x)/(1+1/x)
=x/(x+1)+1/(x+1)
=1
所以:g(x)+g(1/x)=1为常数
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式