设数列{Xn}有界,又Yn的极限是0,证明{XnYn}的极限是0

 我来答
匿名用户
2013-09-22
展开全部
【解析】因为数列{Yn}的极限是0
则对于任意的e,存在N(e),使得n>N时,|Yn|<e
因为数列{Xn}有界
所以不妨假设|Xn|<M
于是当n>N(e/M)的时候|XnYn|<e
由于e的任意性
所以数列{XnYn}的极限是0。============答案满意的话别忘了采纳哦!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式