二叉树的三种遍历,先,中,后遍历
TableDI
2024-07-18 广告
2024-07-18 广告
在Excel中,字符串匹配函数主要用于查找和定位特定字符串在文本中的位置或进行替换操作。常用的字符串匹配函数包括FIND、SEARCH、SUBSTITUTE和REPLACE等。FIND和SEARCH函数用于查找字符串的位置,而SUBSTIT...
点击进入详情页
本回答由TableDI提供
展开全部
二叉树的遍历分为以下三种:
先序遍历:遍历顺序规则为【根左右】
中序遍历:遍历顺序规则为【左根右】
后序遍历:遍历顺序规则为【左右根】
什么是【根左右】?就是先遍历根,再遍历左孩子,最后遍历右孩子;
举个例子,看下图(图从网上找的):
先序遍历:ABCDEFGHK
中序遍历:BDCAEHGKF
后序遍历:DCBHKGFEA
以中序遍历为例:
中序遍历的规则是【左根右】,我们从root节点A看起;
此时A是根节点,遍历A的左子树;
A的左子树存在,找到B,此时B看做根节点,遍历B的左子树;
B的左子树不存在,返回B,根据【左根右】的遍历规则,记录B,遍历B的右子树;
B的右子树存在,找到C,此时C看做根节点,遍历C的左子树;
C的左子树存在,找到D,由于D是叶子节点,无左子树,记录D,无右子树,返回C,根据【左根右】的遍历规则,记录C,遍历C的右子树;
C的右子树不存在,返回B,B的右子树遍历完,返回A;
至此,A的左子树遍历完毕,根据【左根右】的遍历规则,记录A,遍历A的右子树;
A的右子树存在,找到E,此时E看做根节点,遍历E的左子树;
E的左子树不存在,返回E,根据【左根右】的遍历规则,记录E,遍历E的右子树;
E的右子树存在,找到F,此时F看做根节点,遍历F的左子树;
F的左子树存在,找到G,此时G看做根节点,遍历G的左子树;
G的左子树存在,找到H,由于H是叶子节点,无左子树,记录H,无右子树,返回G,根据【左根右】的遍历规则,记录G,遍历G的右子树;
G的右子树存在,找到K,由于K是叶子节点,无左子树,记录K,无右子树,返回G,根据【左根右】的遍历规则,记录F,遍历F的右子树;
F的右子树不存在,返回F,E的右子树遍历完毕,返回A;
至此,A的右子树也遍历完毕;
最终我们得到上图的中序遍历为BDCAEHGKF,无非是按照遍历规则来的;
根据“中序遍历”的分析,相信先序遍历和后序遍历也可以轻松写出~
先序遍历:遍历顺序规则为【根左右】
中序遍历:遍历顺序规则为【左根右】
后序遍历:遍历顺序规则为【左右根】
什么是【根左右】?就是先遍历根,再遍历左孩子,最后遍历右孩子;
举个例子,看下图(图从网上找的):
先序遍历:ABCDEFGHK
中序遍历:BDCAEHGKF
后序遍历:DCBHKGFEA
以中序遍历为例:
中序遍历的规则是【左根右】,我们从root节点A看起;
此时A是根节点,遍历A的左子树;
A的左子树存在,找到B,此时B看做根节点,遍历B的左子树;
B的左子树不存在,返回B,根据【左根右】的遍历规则,记录B,遍历B的右子树;
B的右子树存在,找到C,此时C看做根节点,遍历C的左子树;
C的左子树存在,找到D,由于D是叶子节点,无左子树,记录D,无右子树,返回C,根据【左根右】的遍历规则,记录C,遍历C的右子树;
C的右子树不存在,返回B,B的右子树遍历完,返回A;
至此,A的左子树遍历完毕,根据【左根右】的遍历规则,记录A,遍历A的右子树;
A的右子树存在,找到E,此时E看做根节点,遍历E的左子树;
E的左子树不存在,返回E,根据【左根右】的遍历规则,记录E,遍历E的右子树;
E的右子树存在,找到F,此时F看做根节点,遍历F的左子树;
F的左子树存在,找到G,此时G看做根节点,遍历G的左子树;
G的左子树存在,找到H,由于H是叶子节点,无左子树,记录H,无右子树,返回G,根据【左根右】的遍历规则,记录G,遍历G的右子树;
G的右子树存在,找到K,由于K是叶子节点,无左子树,记录K,无右子树,返回G,根据【左根右】的遍历规则,记录F,遍历F的右子树;
F的右子树不存在,返回F,E的右子树遍历完毕,返回A;
至此,A的右子树也遍历完毕;
最终我们得到上图的中序遍历为BDCAEHGKF,无非是按照遍历规则来的;
根据“中序遍历”的分析,相信先序遍历和后序遍历也可以轻松写出~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
前序遍历:ABDECFG
中序遍历:DBEAFCG
后序遍历:DEBFGCA
前序遍历:1 2 4 3 5 7 6
中序遍历:2 4 1 5 7 3 6
后序遍历:4 2 7 5 6 3 1
做类似的题目,你可以先由两个遍历画出二叉树。通过形象的二叉树来写出另一个遍历,写的方法如上(递归)。画出二叉树的方法如下:
已知一棵二叉树的前序序列和中序序列,构造该二叉树的过程如下:
1. 根据前序序列的第一个元素建立根结点;
2. 在中序序列中找到该元素,确定根结点的左右子树的中序序列;
3. 在前序序列中确定左右子树的前序序列;
4. 由左子树的前序序列和中序序列建立左子树;
5. 由右子树的前序序列和中序序列建立右子树。
已知一棵二叉树的后序序列和中序序列,构造该二叉树的过程如下:
1. 根据后序序列的最后一个元素建立根结点;
2. 在中序序列中找到该元素,确定根结点的左右子树的中序序列;
3. 在后序序列中确定左右子树的后序序列;
4. 由左子树的后序序列和中序序列建立左子树;
5. 由右子树的后序序列和中序序列建立右子树。
中序遍历:DBEAFCG
后序遍历:DEBFGCA
前序遍历:1 2 4 3 5 7 6
中序遍历:2 4 1 5 7 3 6
后序遍历:4 2 7 5 6 3 1
做类似的题目,你可以先由两个遍历画出二叉树。通过形象的二叉树来写出另一个遍历,写的方法如上(递归)。画出二叉树的方法如下:
已知一棵二叉树的前序序列和中序序列,构造该二叉树的过程如下:
1. 根据前序序列的第一个元素建立根结点;
2. 在中序序列中找到该元素,确定根结点的左右子树的中序序列;
3. 在前序序列中确定左右子树的前序序列;
4. 由左子树的前序序列和中序序列建立左子树;
5. 由右子树的前序序列和中序序列建立右子树。
已知一棵二叉树的后序序列和中序序列,构造该二叉树的过程如下:
1. 根据后序序列的最后一个元素建立根结点;
2. 在中序序列中找到该元素,确定根结点的左右子树的中序序列;
3. 在后序序列中确定左右子树的后序序列;
4. 由左子树的后序序列和中序序列建立左子树;
5. 由右子树的后序序列和中序序列建立右子树。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
前序遍历:ABDECFG
中序遍历:DBEAFCG
后序遍历:DEBFGCA
前序遍历:1 2 4 3 5 7 6
中序遍历:2 4 1 5 7 3 6
后序遍历:4 2 7 5 6 3 1
一、已知一棵二叉树的前序序列和中序序列,构造该二叉树的过程如下:
1. 根据前序序列的第一个元素建立根结点;
2. 在中序序列中找到该元素,确定根结点的左右子树的中序序列;
3. 在前序序列中确定左右子树的前序序列;
4. 由左子树的前序序列和中序序列建立左子树;
5. 由右子树的前序序列和中序序列建立右子树。
二、已知一棵二叉树的后序序列和中序序列,构造该二叉树的过程如下:
1. 根据后序序列的最后一个元素建立根结点;
2. 在中序序列中找到该元素,确定根结点的左右子树的中序序列;
3. 在后序序列中确定左右子树的后序序列;
4. 由左子树的后序序列和中序序列建立左子树;
5. 由右子树的后序序列和中序序列建立右子树。
中序遍历:DBEAFCG
后序遍历:DEBFGCA
前序遍历:1 2 4 3 5 7 6
中序遍历:2 4 1 5 7 3 6
后序遍历:4 2 7 5 6 3 1
一、已知一棵二叉树的前序序列和中序序列,构造该二叉树的过程如下:
1. 根据前序序列的第一个元素建立根结点;
2. 在中序序列中找到该元素,确定根结点的左右子树的中序序列;
3. 在前序序列中确定左右子树的前序序列;
4. 由左子树的前序序列和中序序列建立左子树;
5. 由右子树的前序序列和中序序列建立右子树。
二、已知一棵二叉树的后序序列和中序序列,构造该二叉树的过程如下:
1. 根据后序序列的最后一个元素建立根结点;
2. 在中序序列中找到该元素,确定根结点的左右子树的中序序列;
3. 在后序序列中确定左右子树的后序序列;
4. 由左子树的后序序列和中序序列建立左子树;
5. 由右子树的后序序列和中序序列建立右子树。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询