请问不等式:n为正整数,{(n+1)^[1/(n+1)]} +{ 1/[n^(1/n)]}>2 是否成立,给出理由。
推荐于2016-12-02 · 知道合伙人教育行家
关注
展开全部
当x≥1时,不等式是成立的。
【附注】题中函数的图象:
如果你认可我的回答,请及时点击右下角的【采纳为满意回答】按钮
我是百度知道专家,你有问题也可以在这里向我提问:
展开全部
在连续的情况,将n改为x,x≥1,求证不等式成立:
T(x)=(x+1)^(1/(x+1))+1/(x^(1/x))
x=1,T(x)=2.414,
x->∞, T(x)->2
导数T '(x) (谷歌搜索 online derivative calculator 取得这结果的步骤 )
=(x+1)^(1/(x+1))[1/(x+1)^2 – ln(x+1)/(x+1)^2]+[ln(x)/x^2-1/x^2]/x^(1/x)
<0
T(x)是单调减函数
∴T(x)>2
S(n)=(n+1)^(1/(n+1))+1/(n^(1/n))
S(1)=2.414,
lim (n->∞) S(n)=2
n是x中正整数,S(n)是单调减函数 (或在绘制图可以观察到)
∴S(n)>2
T(x)=(x+1)^(1/(x+1))+1/(x^(1/x))
x=1,T(x)=2.414,
x->∞, T(x)->2
导数T '(x) (谷歌搜索 online derivative calculator 取得这结果的步骤 )
=(x+1)^(1/(x+1))[1/(x+1)^2 – ln(x+1)/(x+1)^2]+[ln(x)/x^2-1/x^2]/x^(1/x)
<0
T(x)是单调减函数
∴T(x)>2
S(n)=(n+1)^(1/(n+1))+1/(n^(1/n))
S(1)=2.414,
lim (n->∞) S(n)=2
n是x中正整数,S(n)是单调减函数 (或在绘制图可以观察到)
∴S(n)>2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明有误, 删啦。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1+1/n^2 + 1/(n+1)^2
=1+(n^2+n^2+2n+1)/n^2(n+1)^2
=1+2(n^2+n)/n^2(n+1)^2 + 1/n^2(n+1)^2
=1+2/n(n+1) + 1/n^2(n+1)^2
=[1+1/n(n+1)]^2
所以原式 = 1+1/n(n+1)
=1+(n^2+n^2+2n+1)/n^2(n+1)^2
=1+2(n^2+n)/n^2(n+1)^2 + 1/n^2(n+1)^2
=1+2/n(n+1) + 1/n^2(n+1)^2
=[1+1/n(n+1)]^2
所以原式 = 1+1/n(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解
追答
∵(n+1)^(1/(n+1))>
n^(1/n)
∴(n+1)^(1/(n+1))+
1/(n^(1/n))>n^(1/n)+
1/(n^(1/n))≥2
当x≥1时,在连续的条件下,(x+1)^(1/(x+1))
+1/(x^(1/x))>2成立.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询