一元二次不等式怎么解,求详细方法。最好有例题。谢谢。
1个回答
展开全部
只含有一个未知数(即“元”),并且未知数的最高次数为2(即“次”)的整式方程叫做一元二次方程(英文名:quadratic equation of one unknown)。一元二次方程的标准形式(即所有一元二次方程经整理都能得到的形式)是ax²+bx+c=0(a,b,c为常数,x为未知数,且a≠0)。求根公式:x=[-b±√(b²-4ac)]/2a。
配方法
(直接开)
形如x=p或(nx+m)=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.
如果方程化成x²=p的形式,那么可得x=±p;(x²=p,x=±根号p)
如果方程能化成(nx+m)=p(p≥0)的形式,那么nx+m=±p.(同上)
注意:①等号左边是一个数的平方的形式而等号右边是一个非负数.
②降次的实质是由一个一元二次方程转化为两个一元一次方程.
③方法是根据平方根的意义开平方
(配方法)
(1)将一元二次方程配成(x+m)=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
(2)用配方法解一元二次方程的步骤:
①把原方程化为ax²+bx+c=0(a≠0)的形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.
配方法的应用:1、用配方法解一元二次方程.
配方法的理论依据是公式a²±2ab+b²=(a±b)
配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.
2、利用配方法求二次三项式是一个完全平方式时所含字母系数的值.
关键是:二次三项式是完全平方式,则常数项是一次项系数一半的平方.
公式法
1)把 德尔塔=b²-4ac 叫做一元二次方程ax²+bx+c=0(a≠0)的判别式.
(2)用求根公式解一元二次方程的方法是公式法.
(3)用公式法解一元二次方程的一般步骤为:
①把方程化成一般形式,进而确定a,b,c的值(注意符号);
②求出b²-4ac的值(若b²-4ac<0,方程无实数根,b²-4ac>0 方程有两个不相等的实根,b²-4ac=0时方程有两个等根 );
③在b²-4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.
注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b²-4ac≥0.
求根公式:利用一元二次方程根的判别式(△=b-4ac)判断方程的根的情况.
一元二次方程ax²+bx+c=0(a≠0)的根与△=b²-4ac有如下关系:
①当△>0时,方程有两个不相等的两个实数根;
②当△=0时,方程有两个相等的两个实数根;
③当△<0时,方程无实数根.
上面的结论反过来也成立.
根与系数的关系:
利用一元二次方程根的判别式(△=b-4ac)判断方程的根的情况.
一元二次方程ax²+bx+c=0(a≠0)的根与△=b²-4ac有如下关系:
①当△>0时,方程有两个不相等的两个实数根;
②当△=0时,方程有两个相等的两个实数根;
③当△<0时,方程无实数根.
上面的结论反过来也成立.
特殊解法
开平方法,因式分解法(包括十字相乘法,双十字相乘法,拆项和添减项法等)
因式分解法:
(1)因式分解法解一元二次方程的意义
因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
(2)因式分解法解一元二次方程的一般步骤:
①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.
楼主 这是直接截百度的 我选择了一些 望采纳
配方法
(直接开)
形如x=p或(nx+m)=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.
如果方程化成x²=p的形式,那么可得x=±p;(x²=p,x=±根号p)
如果方程能化成(nx+m)=p(p≥0)的形式,那么nx+m=±p.(同上)
注意:①等号左边是一个数的平方的形式而等号右边是一个非负数.
②降次的实质是由一个一元二次方程转化为两个一元一次方程.
③方法是根据平方根的意义开平方
(配方法)
(1)将一元二次方程配成(x+m)=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.
(2)用配方法解一元二次方程的步骤:
①把原方程化为ax²+bx+c=0(a≠0)的形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.
配方法的应用:1、用配方法解一元二次方程.
配方法的理论依据是公式a²±2ab+b²=(a±b)
配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.
2、利用配方法求二次三项式是一个完全平方式时所含字母系数的值.
关键是:二次三项式是完全平方式,则常数项是一次项系数一半的平方.
公式法
1)把 德尔塔=b²-4ac 叫做一元二次方程ax²+bx+c=0(a≠0)的判别式.
(2)用求根公式解一元二次方程的方法是公式法.
(3)用公式法解一元二次方程的一般步骤为:
①把方程化成一般形式,进而确定a,b,c的值(注意符号);
②求出b²-4ac的值(若b²-4ac<0,方程无实数根,b²-4ac>0 方程有两个不相等的实根,b²-4ac=0时方程有两个等根 );
③在b²-4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.
注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b²-4ac≥0.
求根公式:利用一元二次方程根的判别式(△=b-4ac)判断方程的根的情况.
一元二次方程ax²+bx+c=0(a≠0)的根与△=b²-4ac有如下关系:
①当△>0时,方程有两个不相等的两个实数根;
②当△=0时,方程有两个相等的两个实数根;
③当△<0时,方程无实数根.
上面的结论反过来也成立.
根与系数的关系:
利用一元二次方程根的判别式(△=b-4ac)判断方程的根的情况.
一元二次方程ax²+bx+c=0(a≠0)的根与△=b²-4ac有如下关系:
①当△>0时,方程有两个不相等的两个实数根;
②当△=0时,方程有两个相等的两个实数根;
③当△<0时,方程无实数根.
上面的结论反过来也成立.
特殊解法
开平方法,因式分解法(包括十字相乘法,双十字相乘法,拆项和添减项法等)
因式分解法:
(1)因式分解法解一元二次方程的意义
因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
(2)因式分解法解一元二次方程的一般步骤:
①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.
楼主 这是直接截百度的 我选择了一些 望采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询