高等数学中的函数如何学习
3个回答
展开全部
我觉得数学学习没有什么特别好的拌饭 就是多做题 题做多了 自然就会总结出规律
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
要学好高等数学的函数,首先了解高等数学的特点。高等数学有三个显著的特点:高度的抽象性;严谨的逻辑性;广泛的应用性。
( 1 )高度的抽象性
数学的抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却不是每次都把它们同具体的对象联系起来。在数学的抽象中只留下量的关系和空间形式,而舍弃了其他一切。它的抽象程度大大超过了自然科学中一般的抽象。
( 2 )严谨的逻辑性
数学中的每一个定理,不论验证了多少实例,只有当它从逻辑上被严格地证明了的时候,才能在数学中成立。在数学中要证明一个定理,必须是从条件和已有的数学公式出发,用严谨的逻辑推理方法导出结论。
( 3 )广泛的应用性
高等数学具有广泛的应用性。例如,掌握了导数概念及其运算法则,就可以用它来刻画和计算曲线的切线斜率、曲线的曲率等等几何量;就可以用它来刻画和计算速度、加速度、密度等等物理量;就可以用它来刻画和计算产品产量的增长率、成本的下降率等等经济量; …… 。掌握了定积分概念及其运算法则,就可以用它来刻画和计算曲线的弧长、不规则图形的面积、不规则立体的体积等等几何量;就可以用它来刻画和计算变速运动的物体的行程、变力所做的功、物体的重心等等物理量;就可以用它来刻画和计算总产量、总成本等等经济量。
高等数学既为其它学科提供了便利的计算工具和数学方法,也是学习近代数学所必备的数学基础。了解了这些就能学好高等数学的函数了。
( 1 )高度的抽象性
数学的抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却不是每次都把它们同具体的对象联系起来。在数学的抽象中只留下量的关系和空间形式,而舍弃了其他一切。它的抽象程度大大超过了自然科学中一般的抽象。
( 2 )严谨的逻辑性
数学中的每一个定理,不论验证了多少实例,只有当它从逻辑上被严格地证明了的时候,才能在数学中成立。在数学中要证明一个定理,必须是从条件和已有的数学公式出发,用严谨的逻辑推理方法导出结论。
( 3 )广泛的应用性
高等数学具有广泛的应用性。例如,掌握了导数概念及其运算法则,就可以用它来刻画和计算曲线的切线斜率、曲线的曲率等等几何量;就可以用它来刻画和计算速度、加速度、密度等等物理量;就可以用它来刻画和计算产品产量的增长率、成本的下降率等等经济量; …… 。掌握了定积分概念及其运算法则,就可以用它来刻画和计算曲线的弧长、不规则图形的面积、不规则立体的体积等等几何量;就可以用它来刻画和计算变速运动的物体的行程、变力所做的功、物体的重心等等物理量;就可以用它来刻画和计算总产量、总成本等等经济量。
高等数学既为其它学科提供了便利的计算工具和数学方法,也是学习近代数学所必备的数学基础。了解了这些就能学好高等数学的函数了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询