如图,在△ABC中,AD是BC边的中线,点E在边AB上,CE平分∠ACB,点F是CE的中点,点G是EF的中点。求证:AE=1/2CE
中位线,图片看这个http://f.hiphotos.baidu.com/zhidao/pic/item/cdbf6c81800a19d841d11ef033fa828b...
中位线,图片看这个http://f.hiphotos.baidu.com/zhidao/pic/item/cdbf6c81800a19d841d11ef033fa828ba71e4671.jpg
展开
2个回答
展开全部
本题缺少条件: ∠BAC=90°或∠ACB=60°其中之一。
先证得CE垂直平分AD
连AF,FD,DE,
因为EF=FC,BD=DC,∴DF∥BE,
∴△AGE∼△DGF,又GE=GF
∴△AGE≅△DGF,∴GA=GD
又因为CE平分∠ACB,
∴CE⊥AD (三线合一性质)
即CE垂直平分AD,
(1)若已知∠BAC=90°
因为∠BAC=90°,
∴FA=FE(直角三角形斜边的中线性质)
∴GF=FE/2=AF/2
∴∠GAF=30°
∴∠AFE=90°-30°=60°
∴△AEF是等边三角形,
∴AE=EF=CE/2
(2)若已知∠ACB=60°
∴CA=CD
∴△ACD是等边三角形
∴DB=DC=DA ∠ADC=60°=∠BAD+∠B=2∠BAD
∴∠BAD=60°/=30°
∴GE=AE/2=EF/2
∴AE=EF=CE/2
追问
嗯嗯,我也是证了一晚上啊!知道它是90°却又没法证······
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询