数学,全等三角形的判定,求详细过程
如图,AG⊥BC,AB=AE,AC=AF,∠BAE=∠CAF=90°,过F、E分别作射线GA的垂线,垂足分别为PQ。①求证:EP=FQ②连接EF交射线GA于点H,求证:E...
如图,AG⊥BC,AB=AE,AC=AF,∠BAE=∠CAF=90°,过F、E分别作射线GA的垂线,垂足分别为PQ。
①求证:EP=FQ
②连接EF交射线GA于点H,求证:EH=FH 展开
①求证:EP=FQ
②连接EF交射线GA于点H,求证:EH=FH 展开
3个回答
展开全部
因为∠GAC+∠QAF=90°,∠AFQ+∠QAF=90°,所以∠GAC=∠AFQ。又因为∠AGC=∠ FQA=90°,AF=AC,所以△AGC全等于△FQA(即图中两个青色的三角形)。所以FQ=AG。
因为∠GAB+∠PAE=90°,∠AEP+∠PAE=90°,所以∠GAB=∠AEP。又因为∠AGB=∠APE=90°,AB=AE,所以△AGB全等于△EPA(即图中两个蓝色的三角形)。所以EP=AG。
所以有1、2得FQ=AG=EP,所以FQ=EP,又因为∠EHP=∠FHQ,∠EPH=∠FQH=90°,所以△EPH全等于△FQH。所以EP=FQ,EH=FH。
有什么不明白的继续问我,希望能够采纳,谢谢。。。
展开全部
角QAF加角GAC=90度,所以角QAF=角C,AF=AC所以三角形QAF和三角形GCA全等,QF=AG.
角BAG加角EAP=90,所以叫BAG=角QEP,EA=BA,所以三角形BAG和三角形QEP全等,EP=AG,所以QF=EP
对顶角相等,所以角EHP=角QHF,又EP=QF,所以直角三角形EHP全等于直角三角形FHQ,所以EH=FH
角BAG加角EAP=90,所以叫BAG=角QEP,EA=BA,所以三角形BAG和三角形QEP全等,EP=AG,所以QF=EP
对顶角相等,所以角EHP=角QHF,又EP=QF,所以直角三角形EHP全等于直角三角形FHQ,所以EH=FH
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明△AGC≌△EPH和EPH和QHF≌,角PEH等于角Qfh 所以等于 第二个不打了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询