求导数大题的解题思路或方法,可以给一些例题帮助理解

是文科数学,不要太复杂就行... 是文科数学,不要太复杂就行 展开
 我来答
cmhdd
高粉答主

2013-09-29 · 说的都是干货,快来关注
知道大有可为答主
回答量:3.1万
采纳率:70%
帮助的人:4540万
展开全部

1单调极最值 这个总会吧,求导 ,小于0,单调减,大于0,单调增。等于0,是极值点,端点处与
极值点处求得值 比较下,大小值必在这几个点处
2切线求斜率 也是对原函数求导,求K 代入 y=kx+b
3解证不等式 两个不等式相减,构造新函数,将左端点值代入新函数,然后求导,导函数大于0,单调增,若新函数恒大于0,前不等式大于后不等式,以此类推
例题:

设函数f(x)= ex-ax-2

(Ⅰ)求f(x)的单调区间

(Ⅱ)若a=1,k为整数,且当x>0时,(x-k) f´(x)+x+1>0,求k的最大值

【解】(1)f(x)的定义域为(-∞,+∞),f′(x)=ex-a.

若a≤0,则f′(x)>0,所以f(x)在(-∞,+∞)单调递增.

若a>0,则当x∈(-∞,lna)时,f′(x)<0;

当x∈(lna,+∞)时,f′(x)>0,

所以,f(x)在(-∞,lna)单调递减,在(lna,+∞)单调递增.

(2)由于a=1,所以(x-k)f′(x)+x+1=(x-k)(ex-1)+x+1.

故当x>0时,(x-k)f′(x)+x+1>0等价于

k<+x (x>0).    ①

令g(x)=+x,

则g′(x)=+1=.

由(1)知,函数h(x)=ex-x-2在(0,+∞)单调递增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)存在唯一的零点.故g′(x)在(0,+∞)存在唯一的零点.设此零点为α,则α∈(1,2).

当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0.所以g(x)在(0,+∞)的最小值为g(α).

又由g′(α)=0,可得eα=α+2,所以g(α)=α+1∈(2,3).

由于①式等价于k<g(α),故整数k的最大值为2.

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
arongustc
科技发烧友

2013-09-29 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:2.3万
采纳率:66%
帮助的人:5967万
展开全部
求导可以算微积分里最简单的了,不就是基本公式加复合函数求导公式么?没什么复杂的思路和方法。
你让人家准备例题那得多麻烦,等于让人家写教材,你还不如拿一些你不会的来问呢。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式