4个回答
展开全部
y=x+√[x(2-x)]
定义域为x(2-x)≤0 ===> x(x-2)≤0 ===> 0≤x≤2
原式===> y-x=√[x(2-x)]
===> (y-x)^2=x(2-x)=2x-x^2
===> y^2-2yx+x^2-2x+x^2=0
===> 2x^2-2(y+1)x+y^2=0
由△=4(y+1)^2-8y^2≥0 ===> (y+1)^2-2y^2≥0
===> y^2+2y+1-2y^2≥0
===> y^2-2y-1≤0
===> (2-2√2)/2≤y≤(2+2√2)/2
===> 1-√2≤y≤1+√2
而0≤x≤2时,x≥0,√[x(2-x)]≥0
所以,y≥0
综上:y∈[0,1+√2]
定义域为x(2-x)≤0 ===> x(x-2)≤0 ===> 0≤x≤2
原式===> y-x=√[x(2-x)]
===> (y-x)^2=x(2-x)=2x-x^2
===> y^2-2yx+x^2-2x+x^2=0
===> 2x^2-2(y+1)x+y^2=0
由△=4(y+1)^2-8y^2≥0 ===> (y+1)^2-2y^2≥0
===> y^2+2y+1-2y^2≥0
===> y^2-2y-1≤0
===> (2-2√2)/2≤y≤(2+2√2)/2
===> 1-√2≤y≤1+√2
而0≤x≤2时,x≥0,√[x(2-x)]≥0
所以,y≥0
综上:y∈[0,1+√2]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
√x(2-x)的定义域为:
0≤x≤2
y=x+√[1-(x-1)^2
令x-1=cosa
0≤a≤π
y=(1+cosa)+sina
=sina+cosa+1
=√2sin(a+π/4)+1
π/4≤a+π/4≤5π/4
-√2/2≤sin(a+π/4)≤1
-1≤√2sin(a+π/4)≤√2
0≤√2sin(a+π/4)+1≤√2+1
即,
0≤y≤√2+1
所以原函数的值域为:
[0,√2+1]
0≤x≤2
y=x+√[1-(x-1)^2
令x-1=cosa
0≤a≤π
y=(1+cosa)+sina
=sina+cosa+1
=√2sin(a+π/4)+1
π/4≤a+π/4≤5π/4
-√2/2≤sin(a+π/4)≤1
-1≤√2sin(a+π/4)≤√2
0≤√2sin(a+π/4)+1≤√2+1
即,
0≤y≤√2+1
所以原函数的值域为:
[0,√2+1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
追答
y=x+√x(2-x)
2x²-2(1+y)x+y²=0
△=4(1+y)²-8y²≥0
y²-2y-1≤0
1-√2≤y≤1+√2
x(2-x)≥0
0≤x≤2
y∈[0,1+√2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询