如图,在△ABC中,∠C=90°,AC=BC,BD平分∠CBA,DE⊥AB于E,求证:AD+DE=BE

二月天陈鹏
2013-10-02 · TA获得超过7538个赞
知道小有建树答主
回答量:595
采纳率:0%
帮助的人:873万
展开全部
由角平分线的定义、垂直的定义证明△DEB≌△DCB,再根据全等三角形的对应边相等得出结论.证明:∵BD平分∠CBA(已知),
∴∠EBD=∠CBD(角平分线的定义).
∵DE⊥AB(已知),
∴∠DEB=90°(垂直的定义).
∵∠C=90°(已知),
∴∠DEB=∠C(等量代换).
在△DEB和△DCB中,
∴△DEB≌△DCB(AAS).
∴DE=DC,BE=BC(全等三角形的对应边相等).
∵AD+DC=AC=BC(已知),
∴AD+DE=BE(等量代换).
点评:本题考查了角平分线的定义、垂直的定义、全等三角形的判定及其性质等知识.利用相等的线段进行等效转是解答本题的关键.

请记得采纳哟 谢谢!
13285531719a
2013-10-02 · TA获得超过2254个赞
知道小有建树答主
回答量:357
采纳率:0%
帮助的人:251万
展开全部
由角平分线的定义、垂直的定义证明△DEB≌△DCB,再根据全等三角形的对应边相等得出结论.解答:证明:∵BD平分∠CBA(已知),
∴∠EBD=∠CBD(角平分线的定义).
∵DE⊥AB(已知),
∴∠DEB=90°(垂直的定义).
∵∠C=90°(已知),
∴∠DEB=∠C(等量代换).
在△DEB和△DCB中

∴△DEB≌△DCB(AAS).
∴DE=DC,BE=BC(全等三角形的对应边相等).
∵AD+DC=AC=BC(已知),
∴AD+DE=BE(等量代换).

求采纳!!!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
幻辰love
2013-10-02 · TA获得超过393个赞
知道答主
回答量:148
采纳率:0%
帮助的人:88.7万
展开全部
由角平分线的定义、垂直的定义证明△DEB≌△DCB,再根据全等三角形的对应边相等得出结论.解答:证明:∵BD平分∠CBA(已知),
∴∠EBD=∠CBD(角平分线的定义).
∵DE⊥AB(已知),
∴∠DEB=90°(垂直的定义).
∵∠C=90°(已知),
∴∠DEB=∠C(等量代换).
在△DEB和△DCB中

∴△DEB≌△DCB(AAS).
∴DE=DC,BE=BC(全等三角形的对应边相等).
∵AD+DC=AC=BC(已知),
∴AD+DE=BE(等量代换).点评:本题考查了角平分线的定义、垂直的定义、全等三角形的判定及其性质等知识.利用相等的线段进行等效转是解答本题的关键.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式