(1/2+1/3+...+1/2000)*(1+1/2+...+1/1999)-(1+1/2+...+1/2000)*(1/2+1/3+...+1/1999)

原式的答案和过程。。。。急急急急急急... 原式的答案和过程。。。。急急急急急急 展开
数学好好玩
2013-10-03 · 教育领域创作者
数学好好玩
采纳数:12235 获赞数:136794

向TA提问 私信TA
展开全部
分析:算式的第一部分,先用乘法分配律展开,就容易做了:

解:原式=(1/2+1/3+...+1/2000)+
(1/2+1/3+...+1/2000)×(1/2+...+1/1999)-(1+1/2+...+1/2000)*(1/2+1/3+...+1/1999)
=(1/2+1/3+...+1/2000)+(1/2+...+1/1999)×[(1/2+1/3+...+1/2000)-(1+1/2+...+1/2000)]
=(1/2+1/3+...+1/2000)+(1/2+...+1/1999)×(-1)
=(1/2+1/3+...+1/2000)+(-1/2-...-1/1999)
=1/2+1/3+…+1/2000-1/2-1/3-…-1/1999
=(1/2-1/2)+(1/3-1/3)+…+(1/1999-1/1999)+1/2000
=0+0+…+0+1/2000
=1/2000
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式