已知函数f(x)=x^2+1,且g(x)=f[f(x)],个G(x)=g(x)-2af(x) (1)若a=3,求函数G(x)的最小值
展开全部
G(x)=g(x)-af(x)=(x^2+1)²+1-a(x²+1)=x⁴+(2-a)x²+1-a
G'(x)=4x³+2(2-a)x
若G(x)在(负无穷,-1)上为减函数,并且在(-1,0)上为增函数
则G'(-1)=0,即 -4-2(2-a)=0,a=4
此时G'(x)=4x³-4)x=4x(x+1)(x-1)
x∈(-∞,,-1) 时 G'(x)<0,G(x)为减函数
x∈(-1,0) 时 G'(x)>0,G(x)为增函数
所以,存在实数a=4使得G(x)在(负无穷,-1)上为
减函数,并且在(-1,0)上为增函数.
G'(x)=4x³+2(2-a)x
若G(x)在(负无穷,-1)上为减函数,并且在(-1,0)上为增函数
则G'(-1)=0,即 -4-2(2-a)=0,a=4
此时G'(x)=4x³-4)x=4x(x+1)(x-1)
x∈(-∞,,-1) 时 G'(x)<0,G(x)为减函数
x∈(-1,0) 时 G'(x)>0,G(x)为增函数
所以,存在实数a=4使得G(x)在(负无穷,-1)上为
减函数,并且在(-1,0)上为增函数.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询