在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②D...
在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
详细步骤,我是学生,想通过你的步骤来学会这个题 展开
详细步骤,我是学生,想通过你的步骤来学会这个题 展开
2个回答
展开全部
解:(1)①∵∠ADC=∠ACB=∠BEC=90°,
∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.
∴∠CAD=∠BCE.
∵AC=BC,
∴△ADC≌△CEB.
②∵△ADC≌△CEB,
∴CE=AD,CD=BE.
∴DE=CE+CD=AD+BE.
(2)∵∠ADC=∠CEB=∠ACB=90°,
∴∠ACD=∠CBE.
又∵AC=BC,
∴△ACD≌△CBE.
∴CE=AD,CD=BE.
∴DE=CE﹣CD=AD﹣BE.
(3)当MN旋转到图3的位置时,
AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).
∵∠ADC=∠CEB=∠ACB=90°,
∴∠ACD=∠CBE,
又∵AC=BC,
∴△ACD≌△CBE,
∴AD=CE,CD=BE,
∴DE=CD﹣CE=BE﹣AD.
∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.
∴∠CAD=∠BCE.
∵AC=BC,
∴△ADC≌△CEB.
②∵△ADC≌△CEB,
∴CE=AD,CD=BE.
∴DE=CE+CD=AD+BE.
(2)∵∠ADC=∠CEB=∠ACB=90°,
∴∠ACD=∠CBE.
又∵AC=BC,
∴△ACD≌△CBE.
∴CE=AD,CD=BE.
∴DE=CE﹣CD=AD﹣BE.
(3)当MN旋转到图3的位置时,
AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).
∵∠ADC=∠CEB=∠ACB=90°,
∴∠ACD=∠CBE,
又∵AC=BC,
∴△ACD≌△CBE,
∴AD=CE,CD=BE,
∴DE=CD﹣CE=BE﹣AD.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询