如图 ,将矩形纸片ABCD沿对角线BD对折,点C落在点E处,BE交AD于点F,连接AE.

证明:1、BF=DF2、AE//BD3、若AB=6,BC=10分别求AF\BF的长,并求三角形FBD的周长和面积。... 证明:1、BF=DF 2、AE//BD 3、若AB=6,BC=10分别求AF\BF的长,并求三角形FBD的周长和面积。 展开
雅柔fans
2013-10-06 · TA获得超过206个赞
知道答主
回答量:69
采纳率:0%
帮助的人:89.5万
展开全部
第一个问题:
∵ABCD是矩形,∴BC∥AD,∴∠CBD=∠FDB。······①
∵E是由C沿BD折叠得到的,∴∠CBD=∠FBD。······②
由①、②,得:∠FDB=∠FBD,∴BF=DF

第二个问题:
∵ABCD是矩形,∴AB=DC、∠BCD=∠BAD=90°。
∵E是由C沿BD折叠得到的,∴DE=DC、∠BED=∠BCD=90°。
由∠BAD=∠BED=90°,得:A、B、D、E共圆。
由AB=DC、DE=DC,得:AB=DE,而A、B、D、E共圆,
∴AE∥BD[同圆中,夹等弦的直线平行]

第三个问题:
1、求AF
∵ABCD是矩形,∴AD=BC=10。
由第一个问题的结论,有:BF=DF,∴BF=DF=AD-AF=10-AF。
∵ABCD是矩形,∴AB⊥AF,∴由勾股定理,有:BF^2=AB^2+AF^2,
∴(10-AF)^2=36+AF^2,∴100-20AF+AF^2=36+AF^2,∴20AF=100-36=64,
∴AF=64/20=16/5

2、求BF
∵AF=16/5,∴BF=10-AF=10-16/5=34/5

3、求△FBD的周长
∵AB⊥AD,∴由勾股定理,有:BD=√(AB^2+AD^2)=√(36+100)=2√34
∴△FBD的周长=BF+DF+BD=34/5+34/5+2√34=68/5+2√34。

4、求△FBD的面积
△FBD的面积=(1/2)DF×AB=(1/2)×(34/5)×6=102/5
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式