证明函数f(x)=x²在区间(-∞,0)上为减函数
3个回答
展开全部
任取X1 <X2<0 则f(x2)-f(x1)=x2∧2-x1∧2=(x2+x1)(x2-x1)
∵x1<X2<0 ∴x2+x1<0 x2-x1>0 ∴f(x2)-f(x1)<0 ∴f(x2)<f(x1)
∴f(x)=x²在区间(-∞,0)上为减函数
∵x1<X2<0 ∴x2+x1<0 x2-x1>0 ∴f(x2)-f(x1)<0 ∴f(x2)<f(x1)
∴f(x)=x²在区间(-∞,0)上为减函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
画幅图就可证明了。
而以下是正规的证明:
任取x1,x2属于(-∞,0),x1<x2,
f(x1)-f(x2)=x1²-x2²=(x1+x2)(x1-x2)
∵x1,x2属于(-∞,0),x1<x2
∴x1+x2<0,x1-x2<0
∴f(x1)-f(x2)>0
即f(x1)>f(x2)
∴
函数f(x)=x²在区间(-∞,0)上为减函数
而以下是正规的证明:
任取x1,x2属于(-∞,0),x1<x2,
f(x1)-f(x2)=x1²-x2²=(x1+x2)(x1-x2)
∵x1,x2属于(-∞,0),x1<x2
∴x1+x2<0,x1-x2<0
∴f(x1)-f(x2)>0
即f(x1)>f(x2)
∴
函数f(x)=x²在区间(-∞,0)上为减函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询