1个回答
展开全部
设z=x+iy
f(z)=e^z=e^(x+iy)=e^x·e^(iy)=e^xcosy+ie^xsiny
Re[f(z)]=e^xcosy,Im[f(z)]=e^xsiny
令u(x,y)=e^xcosy,v(x,y)=e^xsiny
du/dx=e^xcosy
du/dy=-e^xsiny
dv/dx=e^xsiny
dv/dy=e^xcosy
由du/dx=dv/dy得e^xcosy=e^xcosy,可知该方程对于x,y∈R都成立
由du/dy=-dv/dx得-e^xsiny=-e^xsiny,可知该方程对于x,y∈R都成立
即对于任意的z∈C,f(z)=e^z都满足柯西黎曼条件
所以f(z)=e^z在C上处处可导,故在C上处处解析
特别地,f(z)=e^z在z=0处解析.
f(z)=e^z=e^(x+iy)=e^x·e^(iy)=e^xcosy+ie^xsiny
Re[f(z)]=e^xcosy,Im[f(z)]=e^xsiny
令u(x,y)=e^xcosy,v(x,y)=e^xsiny
du/dx=e^xcosy
du/dy=-e^xsiny
dv/dx=e^xsiny
dv/dy=e^xcosy
由du/dx=dv/dy得e^xcosy=e^xcosy,可知该方程对于x,y∈R都成立
由du/dy=-dv/dx得-e^xsiny=-e^xsiny,可知该方程对于x,y∈R都成立
即对于任意的z∈C,f(z)=e^z都满足柯西黎曼条件
所以f(z)=e^z在C上处处可导,故在C上处处解析
特别地,f(z)=e^z在z=0处解析.
来自:求助得到的回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
方法完全正确。但a≠x不是问题,因为你已经推导出, x=2a+4。其实,你是被函数的一般表示f(x)给误导了。这里,函数f(x+1)和f(2x+5)其实都是复合函数,尽管自变量都是x,但两个函数本质不同的,不是同一个函数。只有当x+1=2x...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询