高二数学椭圆问题

如图,已知椭圆的中心在坐标原点,焦点在x轴上,它的一个顶点为A(0,根号2),且离心率等于√3/2,过点M(0,2)的直线L与椭圆相交于不同两点P,Q,点N在线段PQ上1... 如图,已知椭圆的中心在坐标原点,焦点在x轴上,它的一个顶点为A(0,根号2),且离心率等于√3/2,过点M(0,2)的直线L与椭圆相交于不同两点P,Q,点N在线段PQ上
1)求椭圆的标准方程
2)设PM/PN=MQ/NQ=λ,求λ的范围
展开
iJuly
2013-10-09 · TA获得超过135个赞
知道答主
回答量:69
采纳率:0%
帮助的人:21.6万
展开全部
分析:
(Ⅰ)设椭圆的标准方程为x²/a²+y²/b²=1(a>b>0),由题意知b²=2,a²=8,所以椭圆的标准方程为x²/8+y²/2=1.
(Ⅱ)设P(x1,y1),Q(x2,y2),N(x0,y0),若直线l与y轴重合,则|PM|/|PN|=|MQ|/|NQ| =﹙2-√2﹚/﹙√2-y0﹚=﹙2+√2﹚/﹙√2+y0﹚ ,得y0=1,得λ=√2 .若直线l与y轴不重合,则设直线l的方程为y=kx+2,与椭圆方程联立消去y得(1+4k²)x²+16kx+8=0,得x1+x2=-16k/﹙1+4k²﹚①,x1x2=8/﹙1+4k²﹚② .由此可知λ的取值范围.

解答:
解:

(Ⅰ)设椭圆的标准方程为x²/a²+y²/b²=1(a>b>0)
因为它的一个顶点为A(0,√2),
所以b²=2,
由离心率等于√3/2,
得 √[﹙a²-b²﹚/a²]=√3/2,
解得a²=8,
所以椭圆的标准方程为x²/8+y²/2=1

(Ⅱ)设P(x1,y1),Q(x2,y2),N(x0,y0),
若直线l与y轴重合,
则|PM|/|PN|=|MQ|/|NQ|=﹙2-√2﹚/﹙√2-y0﹚=﹙2+√2﹚/﹙√2+y0﹚,
得y0=1,得λ= 2 .
若直线l与y轴不重合,
则设直线l的方程为y=kx+2,与椭圆方程联立消去y得(1+4k²)x²+16kx+8=0,
得x1+x2=-16k/﹙1+4k²﹚①,x1x2=8/﹙1+4k²﹚②,
由|PM|/|PN|=|MQ|/|NQ|得﹙0-x1﹚/﹙x1-x0﹚=﹙0-x2﹚/﹙x0-x2﹚ ,
整理得2x1x2=x0(x1+x2),将①②代入得x0=-1/k,又点N(x0,y0)在直线l上,
所以y0=k×(-1/k )+2=1,于是有1<y1<√2 ,
因此λ=﹙2-y1﹚/﹙y1-1﹚=﹙1-y1+1﹚/﹙y1-1﹚=[1/﹙y1-1﹚]-1,
由1<y1<√2,得1/(y1-1﹚>√2+1,
所以λ>√2 ,综上所述,有λ≥√2

点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,仔细解答.

有疑问可以追问哦,。
810485364
2013-10-08 · TA获得超过2.1万个赞
知道大有可为答主
回答量:7419
采纳率:83%
帮助的人:2735万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式