已知数列an是等比数列, a2=2,a5=1/4,则a1a2+a2a3+……+ana(n+1)=
展开全部
an=a1q^(n-1)
a2= a1q = 2 (1)
a5=a1q^4 = 1/2 (2)
(2)/(1)
q^3= 1/4
q= 2^(-2/3)
a1 = 2/q = 2^(5/3)
a1a2+a2a3+...+an.a(n+1)
= (a1)^2.q( 1+ q^2+q^4+....+q^[2(n-1)] )
=(a1)^2.q ( q^(2n)-1)/(q^2-1)
= 2^(10/3). 2^(-2/3) .[ 2^(-4n/3) - 1]/( 2^(-4/3) -1)
=2^(8/3) .[ 2^(-4n/3) - 1]/( 2^(-4/3) -1)
a2= a1q = 2 (1)
a5=a1q^4 = 1/2 (2)
(2)/(1)
q^3= 1/4
q= 2^(-2/3)
a1 = 2/q = 2^(5/3)
a1a2+a2a3+...+an.a(n+1)
= (a1)^2.q( 1+ q^2+q^4+....+q^[2(n-1)] )
=(a1)^2.q ( q^(2n)-1)/(q^2-1)
= 2^(10/3). 2^(-2/3) .[ 2^(-4n/3) - 1]/( 2^(-4/3) -1)
=2^(8/3) .[ 2^(-4n/3) - 1]/( 2^(-4/3) -1)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询