高等数学求极限问题,大一新生跪求解决!
3个回答
展开全部
求极限:x→0lim(tanx-sinx)/x³
解一:原式=x→0lim(sinx-sinxcosx)/(x³cosx)=x→0limsinx(1-cosx)/(x³cosx)
=x→0lim(1-cosx)/(x²cosx)=x→0lim[2sin²(x/2)]/[x²(1-2sin²(x/2)]
=x→0lim(x²/2)/[x²(1-x²/2)]=x→0lim[1/(2-x²)]=1/2
解二:原式=x→0lim(sec²x-cosx)/(3x²)=x→0lim(2sec²xtanx+sinx)/(6x)
=x→0lim(4sec²xtan²x+2sec⁴x+cosx)/6=3/6=1/2.
解一:原式=x→0lim(sinx-sinxcosx)/(x³cosx)=x→0limsinx(1-cosx)/(x³cosx)
=x→0lim(1-cosx)/(x²cosx)=x→0lim[2sin²(x/2)]/[x²(1-2sin²(x/2)]
=x→0lim(x²/2)/[x²(1-x²/2)]=x→0lim[1/(2-x²)]=1/2
解二:原式=x→0lim(sec²x-cosx)/(3x²)=x→0lim(2sec²xtanx+sinx)/(6x)
=x→0lim(4sec²xtan²x+2sec⁴x+cosx)/6=3/6=1/2.
展开全部
用定理lim[x→0] sinx/x=1
lim[x→0] (tanx-sinx)/x³
=lim[x→0] (sinx/cosx-sinx)/x³
=lim[x→0] (sinx-sinxcosx)/(x³cosx)
=lim[x→0] sinx(1-cosx)/(x³cosx)
=lim[x→0] sin³x(1-cosx)/(x³sin²xcosx)
=lim[x→0] (sinx/x)³·(1-cosx)/(sin²xcosx)
=lim[x→0] (sinx/x)³·(1-cosx)/[(1-cos²x)cosx]
=lim[x→0] (sinx/x)³·(1-cosx)/[(1+cosx)(1-cosx)cosx]
=lim[x→0] (sinx/x)³·1/[(1+cosx)cosx]
=1·1/(1+1)
=1/2
lim[x→0] (tanx-sinx)/x³
=lim[x→0] (sinx/cosx-sinx)/x³
=lim[x→0] (sinx-sinxcosx)/(x³cosx)
=lim[x→0] sinx(1-cosx)/(x³cosx)
=lim[x→0] sin³x(1-cosx)/(x³sin²xcosx)
=lim[x→0] (sinx/x)³·(1-cosx)/(sin²xcosx)
=lim[x→0] (sinx/x)³·(1-cosx)/[(1-cos²x)cosx]
=lim[x→0] (sinx/x)³·(1-cosx)/[(1+cosx)(1-cosx)cosx]
=lim[x→0] (sinx/x)³·1/[(1+cosx)cosx]
=1·1/(1+1)
=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询