几道数学题,要有过程,谢谢
4、证明:(1)在Rt△OEC和Rt△OFB中
∵OE=OF
OB=OC,
∴Rt△OEC≌Rt△OFB(HL),
∴∠B=∠C(全等三角形的对应角相等),
∴AB=AC(等角对等边);
(2)在Rt△OEC和Rt△OFB中,
∵OE=OF
OB=OC
∴Rt△OEC≌Rt△OFB(HL),
∴∠OBF=∠OCE,
又∵OB=OC,
∴∠OBC=∠OCB,
∴∠FBO+∠OBC=∠OCE+∠OCB,即∠ABC=∠ACB,
∴AB=AC.
5、:解:∵△ABC、△ADE是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠EAD=∠B=60°,
∴∠BAC+∠CAD=∠EAD+∠CAD,
即∠BAD=∠CAE,
∵在△BAD和△CAE中
AB=AC
∠BAD=∠CAE
AE=AD ,
∴△BAD≌△CAE(SAS),
∴∠ACE=∠B=60°,BD=CE=15cm,
∴BC=BD-CD=15cm-6cm=9cm,
∵△ABC是等边三角形,
∴AC=BC=9cm,
∵∠B+∠BAC=∠ACD=120°,∠ACE=∠B=60°,
∴∠ECD=60°,
故答案为:9cm,60°
6
解答:(1)证明:
①∵△ADE与△ABC都是等边三角形,
∴AC=AB,AE=AD,∠DAE=∠BAC=60°.
∴∠DAE-∠CAD=∠BAC-∠CAD.
即∠CAE=∠BAD.
∴△CAE≌△BAD.
∴EC=DB.
②由△CAE≌△BAD
∴∠ACE=∠B=60°.
∴∠ACE=∠BAC=60°.
∴EC∥AB.
(2)解:②中得到的结论是否仍然成立.
∵△CAE≌△BAD(SAS).
∴∠ACE=∠B=60°.
∴∠ACE=∠BAC=60°.
∴EC∥AB.
8、证明:延长CE、BA交于点F.
∵CE⊥BD于E,∠BAC=90°,
∴∠ABD=∠ACF.
在△ABD与△ACF中,
∠ABD=∠ACF
AB=AC
∠BAD=∠CAF=90° ,
∴△ABD≌△ACF(ASA),
∴BD=CF.
∵BD平分∠ABC,
∴∠CBE=∠FBE.
在△BCE与△BFE中,
∠CBE=∠FBE
BE=BE
∠BEC=∠BEF=90° ,
∴△BCE≌△BFE(ASA),
∴CE=EF,
即CE=1/2CF,
∴CE=1/2BD.
∵CE⊥BD于E,∠BAC=90°,
∴∠ABD=∠ACF.
在△ABD与△ACF中,
∠ABD=∠ACF
AB=AC
∠BAD=∠CAF=90° ,
∴△ABD≌△ACF(ASA),
∴BD=CF.
∵BD平分∠ABC,
∴∠CBE=∠FBE.
在△BCE与△BFE中,
∠CBE=∠FBE
BE=BE
∠BEC=∠BEF=90° ,
∴△BCE≌△BFE(ASA),
∴CE=EF,
即CE=1/2CF,
∴CE=1/2BD.
放大看一下,看能不能看清,下载也行