高二数学求解!
1个回答
展开全部
解:(1)因为N是PB的中点,PA=PB,
所以AN⊥PB.
因为AD⊥平面PAB,所以AD⊥PB,
从而PB⊥平面ADMN.
因为DM⊂平面ADMN,
所以PB⊥DM.
(2)取AD的中点G,连接BG、NG,
则BG∥CD,
所以BG与平面ADMN所成的角和CD与平面ADMN所成的角相等.
因为PB⊥平面ADMN,
所以∠BGN是BG与平面ADMN所成的角.
在Rt△BGN中, sin∠BGN=BNBG=105.
故CD与平面ADMN所成的角是 arcsin105.
所以AN⊥PB.
因为AD⊥平面PAB,所以AD⊥PB,
从而PB⊥平面ADMN.
因为DM⊂平面ADMN,
所以PB⊥DM.
(2)取AD的中点G,连接BG、NG,
则BG∥CD,
所以BG与平面ADMN所成的角和CD与平面ADMN所成的角相等.
因为PB⊥平面ADMN,
所以∠BGN是BG与平面ADMN所成的角.
在Rt△BGN中, sin∠BGN=BNBG=105.
故CD与平面ADMN所成的角是 arcsin105.
追问
PA=PB为什么?
追答
因为N是PB的中点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询