展开全部
解:设线段BA的中点为E,
∵点A(4,0)、B(﹣6,0),∴AB=10,E(﹣1,0).
(1)如答图1所示,过点E在第二象限作EP⊥BA,且EP=AB=5,则易知△PBA为等腰直角三角形,∠BPA=90°,PA=PB=;
以点P为圆心,PA(或PB)长为半径作⊙P,与y轴的正半轴交于点C,
∵∠BCA为⊙P的圆周角,
∴∠BCA=∠BPA=45°,即则点C即为所求.
过点P作PF⊥y轴于点F,则OF=PE=5,PF=1,
在Rt△PFC中,PF=1,PC=,由勾股定理得:CF==7,
∴OC=OF+CF=5+7=12,
∴点C坐标为(0,12);
(2)如答图2所示,在第3象限可以参照(1)作同样操作,同理求得y轴负半轴上的点C坐标为(0,﹣12).
综上所述,点C坐标为(0,12)或(0,﹣12).
故答案为:(0,12)或(0,﹣12).
∵点A(4,0)、B(﹣6,0),∴AB=10,E(﹣1,0).
(1)如答图1所示,过点E在第二象限作EP⊥BA,且EP=AB=5,则易知△PBA为等腰直角三角形,∠BPA=90°,PA=PB=;
以点P为圆心,PA(或PB)长为半径作⊙P,与y轴的正半轴交于点C,
∵∠BCA为⊙P的圆周角,
∴∠BCA=∠BPA=45°,即则点C即为所求.
过点P作PF⊥y轴于点F,则OF=PE=5,PF=1,
在Rt△PFC中,PF=1,PC=,由勾股定理得:CF==7,
∴OC=OF+CF=5+7=12,
∴点C坐标为(0,12);
(2)如答图2所示,在第3象限可以参照(1)作同样操作,同理求得y轴负半轴上的点C坐标为(0,﹣12).
综上所述,点C坐标为(0,12)或(0,﹣12).
故答案为:(0,12)或(0,﹣12).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设C坐标(0, y) 则直线AC的斜率为k1=y/-4,BC的斜率为k2=y/6
因为CB到CA的到角为45°所以tan45°=(k2-k1)/(1+k1k2),化简有y²+10y-24=0有(y+12)(y-2)=0
所以C的坐标为(0,-12)或(0,2)
因为CB到CA的到角为45°所以tan45°=(k2-k1)/(1+k1k2),化简有y²+10y-24=0有(y+12)(y-2)=0
所以C的坐标为(0,-12)或(0,2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询