已知y=fx是奇函数 她在(0,+无穷)是增函数且f(x)<0 试问f=1/f(x)在负无穷到0上是增函数还是减函数 30
展开全部
如果是奇函数,在大于0的部分是增(减)函数,则在小于0的部分必然是增(减)函数。
如果是偶函数,在大于0的部分是增(减)函数,则在小于0的部分必然是减(增)函数。
也就是说,奇函数是关于圆心的反演变换,两轴同时变化,因此导致单调性变了两次又变回来了。
偶函数是反射变换,y轴不变,x轴反射变换,只变了一次,因此单调性发生变化。
同时,这里还有一个复合函数,复合函数的单调性,如果增函数记做(+),减函数记做(-),复合函数的单调性就是若干个(+)(-)的乘积,乘出来是+就是增,是-就是减。
不如这个题,fx是奇函数,单调性不变,负无穷到0为增,记做(+),而y=1/x在负无穷到0为减,记做(-),则(+)乘以(-)得(-),就是减函数。
f(x) < 0没有关系。
如果是偶函数,在大于0的部分是增(减)函数,则在小于0的部分必然是减(增)函数。
也就是说,奇函数是关于圆心的反演变换,两轴同时变化,因此导致单调性变了两次又变回来了。
偶函数是反射变换,y轴不变,x轴反射变换,只变了一次,因此单调性发生变化。
同时,这里还有一个复合函数,复合函数的单调性,如果增函数记做(+),减函数记做(-),复合函数的单调性就是若干个(+)(-)的乘积,乘出来是+就是增,是-就是减。
不如这个题,fx是奇函数,单调性不变,负无穷到0为增,记做(+),而y=1/x在负无穷到0为减,记做(-),则(+)乘以(-)得(-),就是减函数。
f(x) < 0没有关系。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询