求数列:1+a,1+a+a^2,1+a+a^2+a^3,....1+a+a^2+a^3+.....+a^(n-1)的前n项和
2013-10-22
展开全部
这不是等比数列
据观察 可以得出an=(1-a^n)/(1-a)=1/(1-a)-a^n/(1-a)
又a常数 ∴Sn=n/(1-a) +(a-a的n+1次方)/(1-a)
据观察 可以得出an=(1-a^n)/(1-a)=1/(1-a)-a^n/(1-a)
又a常数 ∴Sn=n/(1-a) +(a-a的n+1次方)/(1-a)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-10-22
展开全部
等比数列求和。1可以看成是A^0.
a^0(1-a^n)/(1-a)
a^0(1-a^n)/(1-a)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-10-22
展开全部
an-a(n-1)=a^n.用累加法得a^n=(1-a^(n+1))/(1-a)...Sn=(n-na-a^2+a^(n+2))/(1-a)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询