2个回答
2013-10-21
展开全部
例3设f(x)是定义在[-1,1]上的的偶函数,f(x)与g(x)图像关于x=1对称,且当x [2,3]时g(x)=a(x-2)-2(x-2)3(a为常数)
(1) 求f(x)的解析式
分析:条件中有(1)偶函数(2)对称轴为x=1(3)含有定义域的函数g(x)(4)参数a
先分析以x=1为对称轴
解:∵x=1为对称轴
∴f(x)=f(2-x)
∵x [-1,1]
∴-x [-1,1]
∴2-x [1,3]
已知的g(x)的定义域为[2,3],故需对2-x进行分类讨论
①2-x [2,3]时
x [-1,0]
f(x)=g(2-x)=-ax+2x3
2-x [1,2]时
x [0,1] -x [-1,0]
f(x)=f(-x)=ax-2x3
(1) 求f(x)的解析式
分析:条件中有(1)偶函数(2)对称轴为x=1(3)含有定义域的函数g(x)(4)参数a
先分析以x=1为对称轴
解:∵x=1为对称轴
∴f(x)=f(2-x)
∵x [-1,1]
∴-x [-1,1]
∴2-x [1,3]
已知的g(x)的定义域为[2,3],故需对2-x进行分类讨论
①2-x [2,3]时
x [-1,0]
f(x)=g(2-x)=-ax+2x3
2-x [1,2]时
x [0,1] -x [-1,0]
f(x)=f(-x)=ax-2x3
2013-10-21
展开全部
20.(本题14分)某网民用电脑上因特网有两种方案可选。第一种方案是:在家里上网,费用分为通讯费(即电话费)与网络维护费两部分。现有政策规定:通讯费为1.2元/小时,但每月30元封顶(即超过30元则只需交30元),网络维护费1元/小时,但每月上网不超过10小时则要交10元;第二种方案是:到附近网吧上网,价格为1.5元/小时。
(1)分别将该网民某月内在家上网的费用 (元)与到网吧上网的费用 (元)表示为时间 (小时)的函数;
(2)试确定在何种情况下,该网民在家上网更便宜?
(1)分别将该网民某月内在家上网的费用 (元)与到网吧上网的费用 (元)表示为时间 (小时)的函数;
(2)试确定在何种情况下,该网民在家上网更便宜?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |