二阶导函数连续可推出三阶可导吗?
我是从一道题中想到的这个问题,题目如下:设函数f(x)满足关系式f''(x)+[f'(x)]^2=x,且f'(0)=0,则:点(0,f(0))是曲线y=f(x)的拐点给出...
我是从一道题中想到的这个问题,题目如下:
设函数f(x)满足关系式f''(x)+[f'(x)]^2=x,且f'(0)=0,则:点(0,f(0))是曲线y=f(x)的拐点
给出的解题步骤是:
f''(0)=0, f''(x)可导,f'''(x)=1-2f'(x)f''(x), f'''(0)=1>0
【我的疑问】:题目中没有说3阶可导,为什么解题里直接可以求3阶导数呢?是因为已知给出的是f''(x)的关系式(关于x,而不是某一个x0点),所以表明2阶导函数连续?继而由2阶导函数连续可推出3阶可导吗?谢谢 展开
设函数f(x)满足关系式f''(x)+[f'(x)]^2=x,且f'(0)=0,则:点(0,f(0))是曲线y=f(x)的拐点
给出的解题步骤是:
f''(0)=0, f''(x)可导,f'''(x)=1-2f'(x)f''(x), f'''(0)=1>0
【我的疑问】:题目中没有说3阶可导,为什么解题里直接可以求3阶导数呢?是因为已知给出的是f''(x)的关系式(关于x,而不是某一个x0点),所以表明2阶导函数连续?继而由2阶导函数连续可推出3阶可导吗?谢谢 展开
2个回答
展开全部
f''(x)= x- [f'(x)]^2 注意这个式子 可以看出式子右边是可导的(因为2阶可导) 所以才有f''(x)可导 所以三阶可导
更多追问追答
追问
非常感谢,我好像明白了。还请问从“函数f(x)满足关系式f''(x)+[f'(x)]^2=x”这句话中,能够得出f(x)二阶导函数连续吗?还是只能说明二阶可导啊?
追答
由f''(x)可导 就可以得出f''(x)连续 因为可导函数必定连续
顺便说一下为什么x- [f'(x)]^2可导,因为x可导,f'(x)可导(题目已经写出f''(x)),而 a-b^2是一种基本初等组合,所以那两个函数这样组合出来的函数也是可导的。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询