如图。在RT△ABC中,∠C=90°,AC=3,BC=4,求△ABC内切圆的半径
2013-10-26
展开全部
分析:利用三角形面积相等来求解。
解:在Rt△ABC中,∠C=90°,且BC=4,AC=3
则由勾股定理可得:AB=5
三角形面积SRt△ABC=S△AOB+S△AOC+S△BOC
且S△AOB=1/2 r*AB,S△AOC=1/2 r*AC,S△BOC=1/2 r*BC
则SRt△ABC=1/2 r*(AB+AC+BC)=6r
因为SRt△ABC=1/2 BC*AC=6
所以6r=6
解得r=1
解:在Rt△ABC中,∠C=90°,且BC=4,AC=3
则由勾股定理可得:AB=5
三角形面积SRt△ABC=S△AOB+S△AOC+S△BOC
且S△AOB=1/2 r*AB,S△AOC=1/2 r*AC,S△BOC=1/2 r*BC
则SRt△ABC=1/2 r*(AB+AC+BC)=6r
因为SRt△ABC=1/2 BC*AC=6
所以6r=6
解得r=1
2013-10-26
展开全部
由题意 易求得AB=5又∵ 由公式r=(a+b-c)÷2 {仅用于直角三角形中} 由此可解得 r=1 记住这公式 便于以后解题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询