中心对称与轴对称的区别
一、性质不同
在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。旋转前后图形上能够重合的点叫做对称点。
轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形。在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
二、定理不同
对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的面积被平分。成中心对称的两个图形上每一对对称点所连成的线段都被对称中心平分。中心对称是两个图形间的位置关系,而中心对称图形是一种具有独特特征的图形。
如果两个图形关于某条直线对称,那么这条直线就是对称轴且对称轴垂直平分对称点所连线段。如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴。
三、类型不同
正偶数边形是中心对称图形,正奇数边形不是中心对称图形;正六角形是中心对称图形,等腰梯形不是中心对称图形;等边三角形(正三角形)不是中心对称图形,反比例函数的图像双曲线是以原点为对称中心的中心对称图形。
参考资料来源:百度百科_中心对称
2024-11-14 广告
中心对称指的是图形绕一个点旋转180°能与原图形重合,比如平行四边形,可以以他的对角线交点为中心,旋转180°与原来重合;
轴对称指的是一个图形存在着一条或多条直线,能将图形分成全等两部分,并沿着对称轴折叠可以完全重合,比如等腰梯形。
(1)中心对称:把一个图形绕着一点旋转180°后,如果与另一个图形重合,则这两个图形关于该点成中心对称,这个点叫做其对称中心,旋转前后重合的点叫对称点。
(2)中心对称图形:把一个图形绕着某点旋转180°后,能与其自身重合,这个图形叫做中心对称图形,这个点叫做对称中心。
(3)两者的区别与联系①中心对称是指两个特定图形之间的位置关系,中心对称图形是描述一个图形的形状性质;②将成中心对称的两个图形看作一个整体时,这个整体图形就是中心对称图形。
(4)中心对称图形的性质:①对称点的连线经过对称中心且被对称中心平分②对应线段相等,平行或共线③对应角相等。
坐标轴上:轴对称是关于x/y轴对称,中心对称是关于原点对称
推荐于2017-11-27
在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。旋转前后图形上能够重合的点叫做对称点。
轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形。在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
二、定理不同
对称中心平分中心对称图形内通过该点的任意线段且使中心对称图形的面积被平分。成中心对称的两个图形上每一对对称点所连成的线段都被对称中心平分。中心对称是两个图形间的位置关系,而中心对称图形是一种具有独特特征的图形。
如果两个图形关于某条直线对称,那么这条直线就是对称轴且对称轴垂直平分对称点所连线段。如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴。
三、类型不同
正偶数边形是中心对称图形,正奇数边形不是中心对称图形;正六角形是中心对称图形,等腰梯形不是中心对称图形;等边三角形(正三角形)不是中心对称图形,反比例函数的图像双曲线是以原点为对称中心的中心对称图形。