已知数列{a n }的前n项和是S n ,a 1 =3,且a n+1 =2S n +3,数列{b n }为等差数列,且公差d>0,b 1 +b
已知数列{an}的前n项和是Sn,a1=3,且an+1=2Sn+3,数列{bn}为等差数列,且公差d>0,b1+b2+b3=15.(Ⅰ)求数列的通项公式;(Ⅱ)若a13+...
已知数列{a n }的前n项和是S n ,a 1 =3,且a n+1 =2S n +3,数列{b n }为等差数列,且公差d>0,b 1 +b 2 +b 3 =15.(Ⅰ)求数列的通项公式;(Ⅱ)若 a 1 3 + b 1 , a 2 3 + b 2 , a 3 3 + b 3 成等比数列,求数列 { 1 b n b n+1 } 的前n项和T n .
展开
怀曼Sc
推荐于2016-01-11
·
TA获得超过177个赞
关注
(Ⅰ)由a n+1 =2S n +3,a n =2S n-1 +3(n≥2) 得:a n+1 -a n =2a n ∴a n+1 =3a n (n≥2) ∴ =3(n≥2) (2分) a 2 =2 a 1 +3=9, =3 ,(3分) ∴ =3(n∈ N * ) ∴a n =3 n (4分) (Ⅱ)由b 1 +b 2 +b 3 =15,得b 2 =5(5分) 则b 1 =5-d,b 3 =5+d, + b 1 =6-d, + b 2 =8, + b 3 =14+d 则有:64=(6-d)(14+d)即:d 2 +8d-20=0(6分) d=2或d=-10∵d>0∴d=2(7分) ∴b n =b 1 +(n-1)d=3+2(n-1)=2n+1(8分) ∴ T n = + +…+ = + +…+ = ( - + - +…+ - )= ( - )= (10分) |
收起
为你推荐: