参数检验和非参数检验是什么意思
一楼的回答完全看不懂。能不能解释一下什么叫参数 展开
参数检验是针对参数做的假设,非参数检验是针对总体分布情况做的假设,这个是区分参数检验和非参数检验的一个重要特征。
参数检验和非参数检验的本质区别:
1.参数检验要利用到总体的信息(总体分布、总体的一些参数特征如方差),以总体分布和样本信息对总体参数作出推断;非参数检验不需要利用总体的信息(总体分布、总体的一些参数特征如方差),以样本信息对总体分布作出推断。
2.参数检验只能用于等距数据和比例数据,非参数检验主要用于记数数据。也可用于等距和比例数据,但精确性就会降低。
扩展资料:
参数检验与非参数检验的优缺点。
1)参数检验:优点是符合条件时,检验效率高;其缺点是对资料要求严格,如等级数据、非确定数据(>50mg)不能使用参数检验,而且要求资料的分布型已知和总体方差相等。
2)非参数检验:优点是应用范围广、简便、易掌握;缺点是若对符合参数检验条件的资料用非参数检验,则检验效率低于参数检验。如无效假设是正确的,非参数法与参数法一样好,但如果无效假设是错误的,则非参数检验效果较差,如需检验出同样大小的差异的差异往往需要较多的资料。
另一点是非参数检验统计量是近似服从某一部分,检验的界值表也是有近似的(如配对秩和检验)因此其结果有一定近似性。
1、提出检验假设又称无效假设,符号是H0;备择假设的符号是H1。
H0:样本与总体或样本与样本间的差异是由抽样误差引起的;
H1:样本与总体或样本与样本间存在本质差异;
预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。
2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。
3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立。
如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。
两独立样本的非参数检验是在对总体分布不甚了解的情况下,通过对两组独立样本的分析来推断样本来自的两个总体的分布等是否存在显著差异的方法。独立样本是指在一个总体中随机抽样对在另一个总体中随机抽样没有影响的情况下所获得的样本。
SPSS中提供了多种两独立样本的非参数检验方法,其中包括曼-惠特尼U检验、K-S检验、W-W游程检验、极端反应检验等。
某工厂用甲乙两种不同的工艺生产同一种产品。如果希望检验两种工艺下产品的使用是否存在显著差异,可从两种工艺生产出的产品中随机抽样,得到各自的使用寿命数据。
参考资料:百度百科——参数检验
参考资料:百度百科——非参数检验
2020-07-03 广告
参数检验是针对参数做的假设,非参数检验是针对总体分布情况做的假设,这个是区分参数检验和非参数检验的一个重要特征。
参数检验和非参数检验的本质区别:
1.参数检验要利用到总体的信息(总体分布、总体的一些参数特征如方差),以总体分布和样本信息对总体参数作出推断;非参数检验不需要利用总体的信息(总体分布、总体的一些参数特征如方差),以样本信息对总体分布作出推断。
2.参数检验只能用于等距数据和比例数据,非参数检验主要用于记数数据。也可用于等距和比例数据,但精确性就会降低。
参数假设检验又称统计假设检验,是一种基本的统计推断形式,也是数理统计学的一个重要的分支,用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。
非参数检验是统计分析方法的重要组成部分,它与参数检验共同构成统计推断的基本内容。参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。
拓展资料
总体的特征值叫参数,一些特定分布都有其参数,如正态分布由μ、σ两个参数所决定。参数之于总体,相当于统计量之于样本。
非参数检验往往不假定总体的分布类型,直接对总体的分布的某种假设(例如如称性、分位数大小等等假设)作统计检验。除了拟合优度检验外,还有许多常用的非参数检验。最常见的非参数检验统计量有 3类:计数统计量、秩统计量、符号秩统计量。
参考资料:
参数检验(parameter test)
全称参数假设检验,是指对参数平均值、方差进行的统计检验。参数检验是推断统计的重要组成部分。当总体分布已知(如总体为正态分布),根据样本数据对总体分布的统计参数进行推断。
先由测得的样本数据计算检验统计量,若计算的统计量值落入约定显著性水平a 时的拒绝域内,说明被检参数之间在所约定的显著性水平a 下在统计上有显著性差异;反之, 若计算的统计量值落入约定显著性水平a 时的接受域内,说明被检参数之间在统计上没有显著性差异,是同一总体的参数估计值。
非参数检验(Nonparametric tests)
是统计分析方法的重要组成部分,它与参数检验共同构成统计推断的基本内容。非参数检验是在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。
但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。
二者的根本区别
在于参数检验要利用到总体的信息(总体分布、总体的一些参数特征如方差),以总体分布和样本信息对总体参数作出推断;非参数检验不需要利用总体的信息(总体分布、总体的一些参数特征如方差),以样本信息对总体分布作出推断。
参数检验只能用于等距数据和比例数据,非参数检验主要用于记数数据。也可用于等距和比例数据,但精确性就会降低。
拓展
参数检验,是数理统计学中根据一定假设条件由样本推断总体的一种方法。具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显著性水平进行检验,作出拒绝或接受假设H0的判断。常用的假设检验方法有U检验法、T检验法、χ2检验法(卡方检验)、F检验法等。
参数假设检验又称统计假设检验,是一种基本的统计推断形式,也是数理统计学的一个重要的分支,用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。
参考
如果说1楼的完全看不懂,那要问楼主对统计学了解多少。也好知道怎么解释。