1个回答
展开全部
f(x)=(2-x)/(x+1)=(3-x-1)/(x+1)=3/(x+1) -1; ∵x+1在(-1.+∞)上单调增;∴3/(x+1)在(-1.+∞)上单调减;∴f(x)=在(-1.+∞)上单调减; ---------------------------------------- 如果用定义证明:令-1<x1<x2; f(x2)-f(x1)=3/(x2+1) -1-3/(x1+1) +1; =3[1/(x2+1) -1/(x1+1) ]; =3(x1+1-x2-1) / [(x2+1)(x1+1) ]; =3(x1-x2) / [(x2+1)(x1+1) ];∵(x1-x2)<0,;[(x2+1)(x1+1) >0 ∴3(x1-x2) / [(x2+1)(x1+1) ] <0;即:f(x2)-f(x1)<0,f(x2)<f(x1),得证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询