(2014?南京模拟)如图,在斜三棱柱ABC-A1B1C1中,侧面A1ACC1是边长为2的菱形,∠A1AC=60°.在面ABC中,
(2014?南京模拟)如图,在斜三棱柱ABC-A1B1C1中,侧面A1ACC1是边长为2的菱形,∠A1AC=60°.在面ABC中,AB=23,BC=4,M为BC的中点,过...
(2014?南京模拟)如图,在斜三棱柱ABC-A1B1C1中,侧面A1ACC1是边长为2的菱形,∠A1AC=60°.在面ABC中,AB=23,BC=4,M为BC的中点,过A1,B1,M三点的平面交AC于点N.(1)求证:N为AC中点;(2)平面A1B1MN⊥平面A1ACC1.
展开
1个回答
展开全部
证明:(1)由题意,平面ABC∥平面A1B1C1,
又∵平面A1B1M与平面ABC交于直线MN,与平面A1B1C1交于直线A1B1,
∴MN∥A1B1.
∵AB∥A1B1,∴MN∥AB,∴
=
.
∵M为AB的中点,∴
=1,
∴N为AC中点.
(2)∵四边形A1ACC1是边长为2的菱形,∠A1AC=60°.
在三角形A1AN中,AN=1,AA1=2,
由余弦定理得A1N=
,
故A1A2=AN2+A1N2,
∴∠A1NA=90°,即A1N⊥AC.
在三角形ABC中,AB=2,AC=2
,BC=4,
则BC2=AB2+AC2,
∴∠BAC=90°,即AB⊥AC.
又∵MN∥AB,则AC⊥MN.
∵MN∩A1N=N,MN?面A1B1MN,A1N?面A1B1MN,
∴AC⊥平面A1B1MN.
又∵AC?平面A1ACC1,
∴平面A1B1MN⊥平面A1ACC1.
又∵平面A1B1M与平面ABC交于直线MN,与平面A1B1C1交于直线A1B1,
∴MN∥A1B1.
∵AB∥A1B1,∴MN∥AB,∴
CN |
AN |
CM |
BM |
∵M为AB的中点,∴
CN |
AN |
∴N为AC中点.
(2)∵四边形A1ACC1是边长为2的菱形,∠A1AC=60°.
在三角形A1AN中,AN=1,AA1=2,
由余弦定理得A1N=
3 |
故A1A2=AN2+A1N2,
∴∠A1NA=90°,即A1N⊥AC.
在三角形ABC中,AB=2,AC=2
3 |
则BC2=AB2+AC2,
∴∠BAC=90°,即AB⊥AC.
又∵MN∥AB,则AC⊥MN.
∵MN∩A1N=N,MN?面A1B1MN,A1N?面A1B1MN,
∴AC⊥平面A1B1MN.
又∵AC?平面A1ACC1,
∴平面A1B1MN⊥平面A1ACC1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询