如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AD∥BC,SA⊥CD,AB⊥平面SAD,M是SC的中点,且SA=AB=BC=2
如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AD∥BC,SA⊥CD,AB⊥平面SAD,M是SC的中点,且SA=AB=BC=2,AD=1.(1)求证:DM∥平面S...
如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AD∥BC,SA⊥CD,AB⊥平面SAD,M是SC的中点,且SA=AB=BC=2,AD=1.(1)求证:DM∥平面SAB;(2)求四棱锥M-ABCD的体积.
展开
展开全部
(1)证明:取SB的中点N,连接AN、MN…(2分)
∵点M是SC的中点∴MN∥BC且BC=2MN,
∵底面ABCD是直角梯形,AB垂直于AD和BC,BC=2,AD=1,
∴AD∥BC且BC=2AD,∴MN∥AD且MN=AD,
∴四边形MNAD是平行四边形,∴DM∥AN,…(4分)
∴DM∥平面SAB.…(6分)
(2)解:∵AB⊥底面SAD,SA?底面SAD,AD?底面SAD,
∴AB⊥SA,AB⊥AD,
∵SA⊥CD,AB、CD是平面ABCD内的两条相交直线
∴侧棱SA⊥底面ABCD …(8分)
又在四棱锥S-ABCD中,侧棱SA⊥底面ABCD,底面ABCD是直角梯形,
∴AD∥BC,AB⊥AD,SA=AB=BC=2,AD=1,
又M是SC的中点.
∴VM?ABCD=
VS?ABCD=
?
?SABCD?SA=
?
?
?2=1…(12分)
∵点M是SC的中点∴MN∥BC且BC=2MN,
∵底面ABCD是直角梯形,AB垂直于AD和BC,BC=2,AD=1,
∴AD∥BC且BC=2AD,∴MN∥AD且MN=AD,
∴四边形MNAD是平行四边形,∴DM∥AN,…(4分)
∴DM∥平面SAB.…(6分)
(2)解:∵AB⊥底面SAD,SA?底面SAD,AD?底面SAD,
∴AB⊥SA,AB⊥AD,
∵SA⊥CD,AB、CD是平面ABCD内的两条相交直线
∴侧棱SA⊥底面ABCD …(8分)
又在四棱锥S-ABCD中,侧棱SA⊥底面ABCD,底面ABCD是直角梯形,
∴AD∥BC,AB⊥AD,SA=AB=BC=2,AD=1,
又M是SC的中点.
∴VM?ABCD=
1 |
2 |
1 |
2 |
1 |
3 |
1 |
2 |
1 |
3 |
(2+1)?2 |
2 |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询