正方形ABCD和正方形CEFG,M为AF的中点,连接MD、ME.(1)如图,B、C、G依次在同一条直线上,求证:△MDE

正方形ABCD和正方形CEFG,M为AF的中点,连接MD、ME.(1)如图,B、C、G依次在同一条直线上,求证:△MDE等腰直角三角形;(2)如图,正方形CEFG绕顶点C... 正方形ABCD和正方形CEFG,M为AF的中点,连接MD、ME.(1)如图,B、C、G依次在同一条直线上,求证:△MDE等腰直角三角形; (2)如图,正方形CEFG绕顶点C旋转45°,使B、C、F依次在同一条直线上,则△MDE的形状是______; (3)如图,将正方形CEFG任意旋转,设∠DCE=α°,猜想△MDE的形状,写出你的结论并给予证明. 展开
 我来答
沉默军团51051
推荐于2016-12-01 · 超过63用户采纳过TA的回答
知道答主
回答量:118
采纳率:0%
帮助的人:120万
展开全部
(1)延长DM交EF于H点



∵正方形ABCD和正方形CEFG,M为AF的中点,
∴∠DAM=∠HFM,AM=MF,∠AMD=∠FMH.
∴△MAD≌△MFH.
∴DM=MH,AD=FH.
∴ED=EH,△DEH为等腰直角三角形,
∴△MDE为等腰直角三角形;

(2)△MDE为等腰直角三角形.



(3)如图,延长DM到H使DM=MH,连接EH,延长FH于DC的延长线交于点N.
易证△ADM≌△FHM,∴AD=FH=CD.
∵∠DCE+∠NCG=90°,∠EFH+∠NFG=90°,
∴∠DCE=∠EFH.
∴△DCE≌△FHE.
∴DE=EH,∠DEC=∠FEH,∠DEH=90°.
∵DM=EM,
∴△MDE为等腰直角三角形.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式