(2004?重庆)如图,在⊙O的内接△ABC中,AB=AC,D是⊙O上一点,AD的延长线交BC的延长线于点P.(1)求证
(2004?重庆)如图,在⊙O的内接△ABC中,AB=AC,D是⊙O上一点,AD的延长线交BC的延长线于点P.(1)求证:AB2=AD?AP;(2)若⊙O的直径为25,A...
(2004?重庆)如图,在⊙O的内接△ABC中,AB=AC,D是⊙O上一点,AD的延长线交BC的延长线于点P.(1)求证:AB2=AD?AP;(2)若⊙O的直径为25,AB=20,AD=15,求PC和DC的长.
展开
展开全部
解答:(1)证明:∵∠ADC+∠B=180°,∠B=∠ACB
∴∠ACP+∠ACB=∠ACP+∠B=180°
∴∠ADC=∠ACP
∴△ADC∽△ACP
∴
=
,即
=
所以AB2=AD?AP;
(2)解:过点A作直径AE交BC于点F.
∵△ABC是等腰三角形,
∴AE垂直平分BC
设AF=a,则EF=25-a,BF=
由BF2=AF?EF,得400-a2=a(25-a)
所以AF=a=16,BF=FC=12.
方法1:
由(1)AB2=AD?AP得:AP=
=
=
在Rt△AFP中,PF=
=
=
∴PC=PF-FC=
?12=
又由△PCD∽△PAB得:
=
∴DC=
=
=7;
方法2:(前面部分给分相同)连接BE、EC、BD.
∵AE是直径,
∴∠ABE=90°,且BE=
=15
∴EC=BE=15,又已知AD=15,∴AD=EC
∴DC∥AE,即DC⊥BC,则BD是直径
∴DC=
=
=7
在Rt△PCD中,PD=PA-AD=
?15=
∴PC=
=
.
∴∠ACP+∠ACB=∠ACP+∠B=180°
∴∠ADC=∠ACP
∴△ADC∽△ACP
∴
AD |
AC |
AC |
AP |
AD |
AB |
AB |
AP |
所以AB2=AD?AP;
(2)解:过点A作直径AE交BC于点F.
∵△ABC是等腰三角形,
∴AE垂直平分BC
设AF=a,则EF=25-a,BF=
400?a2 |
由BF2=AF?EF,得400-a2=a(25-a)
所以AF=a=16,BF=FC=12.
方法1:
由(1)AB2=AD?AP得:AP=
AB2 |
AD |
400 |
15 |
80 |
3 |
在Rt△AFP中,PF=
AP2?AF2 |
(
|
64 |
3 |
∴PC=PF-FC=
64 |
3 |
28 |
3 |
又由△PCD∽△PAB得:
DC |
AB |
PC |
PA |
∴DC=
PC?AB |
PA |
28×20 |
80 |
方法2:(前面部分给分相同)连接BE、EC、BD.
∵AE是直径,
∴∠ABE=90°,且BE=
252?202 |
∴EC=BE=15,又已知AD=15,∴AD=EC
∴DC∥AE,即DC⊥BC,则BD是直径
∴DC=
BD2?BC2 |
252?242 |
在Rt△PCD中,PD=PA-AD=
80 |
3 |
35 |
3 |
∴PC=
(
|
28 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询