(2013?上海)在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,联

(2013?上海)在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,联结QP(如图).已知AD=13,AB=5,设AP=x... (2013?上海)在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,联结QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值. 展开
 我来答
熊熊佳荌8z
推荐于2016-12-01 · TA获得超过140个赞
知道小有建树答主
回答量:130
采纳率:100%
帮助的人:57.2万
展开全部
(1)在Rt△ABP中,由勾股定理得:BP2=AP2+AB2=x2+25.
∵MQ是线段BP的垂直平分线,
∴BQ=PQ,BM=
1
2
BP,∠BMQ=90°,
∴∠MBQ+∠BQM=90°,
∵∠ABP+∠MBQ=90°,∴∠ABP=∠BQM,
又∵∠A=∠BMQ=90°,
∴△ABP∽△MQB,
BP
BQ
AP
BM
,即
BP
y
x
1
2
BP
,化简得:y=
1
2x
BP2=
1
2x
(x2+25).
当点Q与C重合时,BQ=PQ=13,在Rt△PQD中,由勾股定理定理得:PQ2=QD2+PD2,即132=52+(13-x)2,解得x=1;
又AP≤AD=13,∴x的取值范围为:1≤x≤13.
∴y=
1
2x
(x2+25)(1≤x≤13).

(2)当⊙P与⊙Q相外切时,如答图1所示:

设切点为M,则PQ=PM+QM=AP+QC=AP+(BC-BQ)=x+(13-y)=13+x-y;
∵PQ=BQ,
∴13+x-y=y,即2y-x-13=0
将y=
1
2x
(x2+25)代入上式得:
1
x
(x2+25)-x-13=0,
解此分式方程得:x=
25
13

经检验,x=
25
13
是原方程的解且符合题意.
∴x=
25
13


(3)按照题意画出图形,如答图2所示,连接QE.

∵EF=EC,EF⊥PQ,EC⊥QC,∴∠1=∠2(角平分线性质).
∵PQ=BQ,∴∠3=∠4,
而∠1+∠2=∠3+∠4(三角形外角性质),∴∠1=∠3.
又∵矩形ABCD,∴AD∥BC,∴∠3=∠5,
∴∠1=∠5,又∵∠C=∠A=90°,
∴△CEQ∽△ABP,
CQ
AP
EC
AB
,即
13?y
x
4
5
,化简得:4x+5y=65,
将y=
1
2x
(x2+25)代入上式得:4x+
5
2x
(x2+25)=65,
解此分式方程得:x=
65±10
26
13

经检验,x=
65±10
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消