1/1+1/2+1/3+.+1/n=?是否有通项公式
1个回答
展开全部
利用“欧拉公式”
1+1/2+1/3+……+1/n
=ln(n)+C,(C为欧拉常数)
具体证明看下面的链接
欧拉常数近似值约为0.57721566490153286060651209
这道题用数列的方法是算不出来的
Sn=1+1/2+1/3+…+1/n
>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)
=ln2+ln(3/2)+ln(4/3)+…+ln[(n+1)/n]
=ln[2*3/2*4/3*…*(n+1)/n]=ln(n+1)
1+1/2+1/3+……+1/n
=ln(n)+C,(C为欧拉常数)
具体证明看下面的链接
欧拉常数近似值约为0.57721566490153286060651209
这道题用数列的方法是算不出来的
Sn=1+1/2+1/3+…+1/n
>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)
=ln2+ln(3/2)+ln(4/3)+…+ln[(n+1)/n]
=ln[2*3/2*4/3*…*(n+1)/n]=ln(n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询