数学期望的公式是什么?
在概率论和统计学中,数学期望(mean)(或均。值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,它反映随机变量平均取值的大小。
设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积分的值 为随机变量的数学期望,记为E(X):
离散型随机变量X的取值为 , 为X对应取值的概率,可理解为数据 出现的频率 ,则:
扩展资料:
性质
设C为一个常数,X和Y是两个随机变量。以下是数学期望的重要性质:
性质3和性质4可以推到到任意有限个相互独立的随机变量之和或之积的情况。
参考资料:数学期望-百度百科
E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn)
X ;1,X ;2,X ;3,……,X。
n为这离散型随机变量,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xn).
扩展资料
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。
参考资料:百度百科词条 数学期望
数学期望的公式:
(1)期望的“线性”性质。对于所有满足条件的离散型的随机变量X,Y和常量a,b,有:E(aX+bY)=aE(x)+bE(y)E(aX+bY)=aE(x)+bE(y);
类似的,我们还有E(XY)=E(X)+E(Y)E(XY)=E(X)+E(Y)。
(2)全概率公式 假设{Bn∣n=1,2,3,...Bn∣n=1,2,3,...}是一个“概率空间有限或可数无限”的分割,且集合BnBn是一个“可数集合”,则对于任意事件A有:
P(A)=∑nP(A∣Bn)P(Bn)P(A)=∑nP(A∣Bn)P(Bn)
(3)全期望公式 E(Y)=E(E(Y∣X))=∑iP(X=xi)E(Y∣X=xi)
数学期望亦称期望、期望值等。在概率论和统计学中,一个离散型随机变量的期望值是试验中每一次可能出现的结果的概率乘以其结果的总和。
拓展资料:
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
参考资料:
E=n*E1
注:E为数学期望,E1为抽一次球的数学期望,n为抽的次数
例:有完全相同的黑球,白球,红球共15个,其中黑7个,白3个,黑5个
则抽5次抽到黑球的个数的数学期望E=5*(5/15)=5/3
衍生问题还有抽人,抽产品等
二:遇红灯问题数学期望
E=P1+P2+……..
注:P为概率,E为相应所有P的和
例:小红去学校的路上有4个红灯,遇第1个红灯的概率为0.5,第2个的为0.35,第3个的为0.65,第4个的为0.23(遇红灯是互相独立的,互不影响的)
则小红在一次去学校的路上遇到的红灯的数学期望E=0.5+0.35+0.65+0.23=1.73
衍生问题有很多
三:三局两胜制问题的局数期望
E=2(1+P1*P2)
注:E为局数期望,P1,P2为两队或两人的获胜的概率(P1+P2=1)
例:甲和乙下棋,甲赢的概率为0.45,乙赢的概率为0.55
则他们三局两胜的局数期望E=2(1+0.45*0.55)=2.495
衍生问题多见于比赛中