“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧

“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。”... “有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。” 展开
 我来答
Good_Women
推荐于2017-11-27 · TA获得超过243个赞
知道答主
回答量:82
采纳率:0%
帮助的人:34.7万
展开全部
假设每头牛每天的吃草量为1,则27头6天的吃草量为27×6=162;23头牛9天的吃草量为23×9=207.207与162的差就是(9-6)天新长出的草,所以牧场每天新长出的草量是(207-162)÷(9-6)=15
因为27头牛6天吃草量为162,这6天新长出的草之和为15×6=90,从而可知牧场原有的划量为162-90=72
牧场每天新长的草够15头牛吃一天,每天都让21头牛中的15头牛吃新长出的草,其余的21-15=6(头)专吃原来的草.所以牧场上的草够吃72÷6=12(天),也就是这个牧场上的草够21头牛吃12天.
综合算式:[27×6-(23×9-27×6)÷(9-6)×6]÷[21-(23×9-27×6)÷(9-6)]=12(天)
jxjxtang
2021-09-28
知道答主
回答量:7
采纳率:0%
帮助的人:1.9万
展开全部

假设原牧场草为z,每天草生成速度为y,每头牛每天吃草量为a;

6y+z=27a*6;

9y+z=23a*9;

解二元一次方程得:y=15a,z=72a

归纳万能公式:

M头牛N天吃完牧场:N=72/(M-15)

答案:21头牛12天吃完整个牧场。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
心碎的丫do
2021-03-19 · TA获得超过142个赞
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式