在一片牧场中,已知饲养牛27头,6天把草吃尽;饲养牛23头,则9天吃尽。如果饲养牛21头,多少天吃

尽?(草还会不断生长)... 尽?(草还会不断生长) 展开
 我来答
穗子和子一
高赞答主

2014-01-07 · 点赞后记得关注哦
知道大有可为答主
回答量:3.2万
采纳率:76%
帮助的人:8118万
展开全部
这种问题叫:牛顿问题 完整解题思路: 假设每头牛每天的吃草量为1,则27头6天的吃草量为27×6=162;23头牛9天的吃草量为23×9=207。207与162的差就是(9-6)天新长出的草,所以牧场每天新长出的草量是(207-162)÷(9-6)=15 因为27头牛6天吃草量为162,这6天新长出的草之和为15×6=90,从而可知牧场原有的划量为162-90=72
牧场每天新长的草够15头牛吃一天,每天都让21头牛中的15头牛吃新长出的草,其余的21-15=6(头)专吃原来的草。所以牧场上的草够吃72÷6=12(天),也就是这个牧场上的草够21头牛吃12天。 综合算式:[27×6-(23×9-27×6)÷(9-6)×6]÷[21-(23×9-27×6)÷(9-6)]=12(天)
追答
这种问题叫:牛顿问题 完整解题思路: 

假设每头牛每天的吃草量为1,则27头6天的吃草量为27×6=162;23头牛9天的吃草量为23×9=207。207与162的差就是(9-6)天新长出的草,所以牧场每天新长出的草量是(207-162)÷(9-6)=15 因为27头牛6天吃草量为162,这6天新长出的草之和为15×6=90,从而可知牧场原有的划量为162-90=72

牧场每天新长的草够15头牛吃一天,每天都让21头牛中的15头牛吃新长出的草,其余的21-15=6(头)专吃原来的草。所以牧场上的草够吃72÷6=12(天),也就是这个牧场上的草够21头牛吃12天。 综合算式:

[27×6-(23×9-27×6)÷(9-6)×6]÷[21-(23×9-27×6)÷(9-6)]=12(天)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式