无穷大与无穷小的关系无穷大是一种什么概念
展开全部
无穷大的倒数等于无穷小,无穷小的倒数(当其不等于0时,因为此时倒数才有意义,而无穷小量是可能取0的)是无穷大量。
古希腊哲学家亚里士多德(Aristotle,公元前384-322)认为,无穷大可能是存在的,因为一个有限量是无限可分的,但是无限是不能达到的。
扩展资料
12世纪,印度出现了一位伟大的数学家布哈斯克拉(Bhaskara),他的概念比较接近现代理论化的概念。
将8水平置放成"∞"来表示"无穷大"符号是在英国人沃利斯(John Wallis)的论文《算术的无穷大》(1655年出版)一书中首次提出的。
莫比乌斯带常被认为是无穷大符号“∞”的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为“∞”的发明比莫比乌斯带还要早。
无限符号的等式
在数学中,有两个偶尔会用到的无限符号的等式,即:∞=∞+1,∞=∞×1。
某一正数值表示无限大的一种公式,没有具体数字,但是正无穷表示比任何一个数字都大的数值。 符号为+∞,同理负无穷的符号是-∞。
展开全部
无穷大的倒数等于无穷小,无穷小的倒数(当其不等于0时,因为此时倒数才有意义,而无穷小量是可能取0的)是无穷大量
比如limx-无穷大 1/x=0
无穷大和无穷小互为倒数
比如xy=1
y=1/x,当x-无穷时,y-0
x-0时,y-无穷
(2)无穷大就是在自变量的某个变化过程中绝对值无限增大的变量或函数。
例如,f(x)=1/x,是当x→0时的无穷大,记作lim(1/x)=∞(x→0)。
无穷大与无穷小具有倒数关系,即当x→a是f(x)为无穷大,则1/f(x)为无穷小。
无穷大为数学符号,是一种变量,记作∞。 [编辑本段]无穷大的3个分类 无穷大分为正无穷大、负无穷大和无穷大(可正可负),分别记作+... 展开
比如limx-无穷大 1/x=0
无穷大和无穷小互为倒数
比如xy=1
y=1/x,当x-无穷时,y-0
x-0时,y-无穷
(2)无穷大就是在自变量的某个变化过程中绝对值无限增大的变量或函数。
例如,f(x)=1/x,是当x→0时的无穷大,记作lim(1/x)=∞(x→0)。
无穷大与无穷小具有倒数关系,即当x→a是f(x)为无穷大,则1/f(x)为无穷小。
无穷大为数学符号,是一种变量,记作∞。 [编辑本段]无穷大的3个分类 无穷大分为正无穷大、负无穷大和无穷大(可正可负),分别记作+... 展开
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询